Uneingeschränkter Zugang

Image Reconstruction Method with the Exploitation of the Spatial Correlation for Electrical Capacitance Tomography

 und    | 30. Dez. 2015

Zitieren

[1] Xie, C.G., Huang, S.M., Hoyle, B.S., Thorn, R., Lenn, C., Snowden, D., Beck, M.S. (1992). Electrical capacitance for flow imaging: system model for development of image reconstruction algorithms and design of primary sensors. IEE Proceedings G - Circuits, Devices and Systems, 139 (1), 89-98.10.1049/ip-g-2.1992.0015Search in Google Scholar

[2] Tikhonov, A.N., Arsenin, V.Y. (1977). Solution of Ill- Posed Problems. New York: V.H. Winston & Sons.Search in Google Scholar

[3] Landweber, L. (1951). An iteration formula for fredholm integral equations of the first kind. American Journal of Mathematics, 73 (3), 615-624.10.2307/2372313Search in Google Scholar

[4] Yang, W.Q., Spink, D.M., York, T.A., McCann, H. (1999). An image reconstruction algorithm based on Landweber’s iteration method for electrical capacitance tomography. Measurement Science and Technology, 10 (11), 1065-1069.10.1088/0957-0233/10/11/315Search in Google Scholar

[5] Jang, J.D., Lee, S.H., Kim, K.Y., Choi, B.Y. (2006). Modified iterative Landweber method in electrical capacitance tomography. Measurement Science and Technology, 17 (7), 1909-1917.10.1088/0957-0233/17/7/032Search in Google Scholar

[6] Liu, S., Fu, L., Yang, W.Q., Wang, H.G., Jiang, F. (2004). Prior-online iteration for image reconstruction with electrical capacitance tomography. IEE Proceedings - Science, Measurement and Technology, 151 (3), 195-200.10.1049/ip-smt:20040246Search in Google Scholar

[7] Yang, W.Q., Peng, L.H. (2003). Image reconstruction algorithms for electrical capacitance tomography. Measurement Science and Technology, 14 (1), L1- L13.10.1088/0957-0233/14/1/201Search in Google Scholar

[8] Su, B.L., Zhang, Y.H., Peng, L.H., Yao, D.Y., Zhang, B.F. (2000). The use of simultaneous iterative reconstruction technique for electrical capacitance tomography. Chemical Engineering Journal, 77 (1), 37-41.Search in Google Scholar

[9] Mou, C.H., Peng, L.H., Yao, D.Y., Xiao, D.Y. (2005). Image reconstruction using a genetic algorithm for electrical capacitance tomography. Tsinghua Science and Technology, 10 (5), 587-592.Search in Google Scholar

[10] Takei, M. (2006). GVSPM image reconstruction for capacitance CT images of particles in a vertical pipe and comparison with the conventional method. Measurement Science and Technology, 17 (8), 2104-2112.10.1088/0957-0233/17/8/008Search in Google Scholar

[11] Soleimani, M., Lionheart, W.R.B. (2005). Nonlinear image reconstruction for electrical capacitance tomography using experimental data. Measurement Science and Technology, 16 (10), 1987-1996.10.1088/0957-0233/16/10/014Search in Google Scholar

[12] Wang, H.X., Tang, L., Cao, Z. (2007). An image reconstruction algorithm based on total variation with adaptive mesh refinement for ECT. Flow Measurement and Instrumentation, 18 (5-6), 262-267.10.1016/j.flowmeasinst.2007.07.004Search in Google Scholar

[13] Fang, W.F. (2004). A nonlinear image reconstruction algorithm for electrical capacitance tomography. Measurement Science and Technology, 15 (10), 2124-2132.10.1088/0957-0233/15/10/023Search in Google Scholar

[14] Lei, J., Liu, S., Guo, H.H., Li, Z.H., Li, J.T., Han, Z.X. (2011). An image reconstruction algorithm based on the semiparametric model for electrical capacitance tomography. Computers and Mathematics with Applications, 61 (9), 2843-2853.10.1016/j.camwa.2011.03.060Search in Google Scholar

[15] Ortiz-Aleman, C., Martin, R., Gamio, J.C. (2004). Reconstruction of permittivity images from capacitance tomography data by using very fast simulated annealing. Measurement Science and Technology, 15 (7), 1382-1390.10.1088/0957-0233/15/7/022Search in Google Scholar

[16] Warsito, W., Fan, L.S. (2001). Neural network based multi-criterion optimization image reconstruction technique for imaging two-and three-phase flow systems using electrical capacitance tomography. Measurement Science and Technology, 12, 2198-2210.10.1088/0957-0233/12/12/323Search in Google Scholar

[17] Banasiak, R., Soleimani, M. (2010). Shape based reconstruction of experimental data in 3D electrical capacitance tomography. NDT & E International, 43 (3), 241-249.10.1016/j.ndteint.2009.12.001Search in Google Scholar

[18] Cao, Z., Xu, L.J., Fan, W.R., Wang, H.X. (2011). Electrical capacitance tomography for sensors of square cross sections using Calderon’s method. IEEE Transactions on Instrumentation and Measurement, 60 (3), 900-907.10.1109/TIM.2010.2045255Search in Google Scholar

[19] Li, Y., Yang, W.Q. (2008). Image reconstruction by nonlinear Landweber iteration for complicated distributions. Measurement Science and Technology, 19, 1-8.10.1088/0957-0233/19/9/094014Search in Google Scholar

[20] Cao, Z., Xu, L.J., Wang, H.X. (2010). Electrical capacitance tomography with a non-circular sensor using the dbar method. Measurement Science and Technology, 21 (1), 1-6. 10.1088/0957-0233/21/1/015502Search in Google Scholar

[21] Watzenig, D., Brandner, M., Steiner, G. (2007). A particle filter approach for tomographic imaging based on different state-space representations. Measurement Science and Technology, 18 (1), 30-40.10.1088/0957-0233/18/1/004Search in Google Scholar

[22] Soleimani, M., Vauhkonen, M., Yang, W.Q., Peyton, A., Kim, B.S., Ma, X.D. (2007). Dynamic imaging in electrical capacitance tomography and electromagnetic induction tomography using a Kalman filter. Measurement Science and Technology, 18 (11), 3287-3294.10.1088/0957-0233/18/11/004Search in Google Scholar

[23] Lei, J., Liu, S., Wang, X.Y. (2012). Dynamic inversion in electrical capacitance tomography using the ensemble Kalman filter. IET Science, Measurement and Technology, 6 (1), 63-77.10.1049/iet-smt.2011.0193Search in Google Scholar

[24] Soleimani, M., Mitchell, C.N., Banasiak, R., Wajman, R., Adler, A. (2009). Four-dimensional electrical capacitance tomography imaging using experimental data. Progress in Electromagnetics Research-PIER, 90 (1), 171-186.10.2528/PIER09010202Search in Google Scholar

[25] Liu, X. (2011). Meshfree Method. Beijing: Science Press.Search in Google Scholar

[26] Liu, G.R. (2010). Meshfree Methods: Moving Beyond the Finite Element Method (2nd ed.). Taylor & Francis Group.Search in Google Scholar

[27] Goswami, J.C., Chan, A.K. (1999). Fundamentals of Wavelet: Theory, Algorithm and Applications. New York: John Willy & Sons.Search in Google Scholar

[28] Liu, T., Zeng, X.L., Zeng, J. (2006). An Induction for Practical Wavelet Analysis. Beijing: National Defense Industry Press.Search in Google Scholar

[29] Misiti, M., Misiti, Y., Oppenheim, G., Poggi, J.M. (2007). Wavelets and Their Applications. Herms Science.10.1002/9780470612491Search in Google Scholar

[30] Golik, W.L. (1998). Wavelet packets for fast solution of electromagnetic integral equations. IEEE Transactions on Antennas and Propagation, 46 (5), 618-624.10.1109/8.668902Search in Google Scholar

[31] Xu, C., Zhao, R.Z., Gan, X.B. (2004). Wavelet Analysis and Applied Algorithms. Beijing: Science Press.Search in Google Scholar

[32] Zhang, Z., Shi, Y., Ding, W., Yin, B. (2013). MR images reconstruction based on TVWL2-L1 model. Journal of Visual Communication and Image Representation, 24 (2), 187-195. 10.1016/j.jvcir.2012.05.006Search in Google Scholar

[33] Rudin, L.I., Osher, S., Fatemi E. (1992). Nonlinear total variation based noise removal algorithms. Physic D, 60 (1-4), 259-268.10.1016/0167-2789(92)90242-FSearch in Google Scholar

[34] Li, Y., Osher, S. (2009). A new median formula with applications to PDE based denoising. Communications in Mathematical Sciences, 7 (3), 741-753.10.4310/CMS.2009.v7.n3.a11Search in Google Scholar

[35] Papafitsoros, K., Schonlieb, C.B., Sengul, B. (2013). Combined first and second order total variation inpainting using split Bregman. Image Processing On Line, 3, 112-136.10.5201/ipol.2013.40Search in Google Scholar

[36] Chan, T.F., Wong, C.K. (2000). Convergence of the alternating minimization algorithm for blind deconvolution. Linear Algebra and its Applications, 316 (1-3), 259-285.10.1016/S0024-3795(00)00141-5Search in Google Scholar

[37] Xiao, Y., Zeng, T., Yu, J., Ng, M.K. (2011). Restoration of images corrupted by mixed Gaussianimpulse noise via L1-L0 minimization. Pattern Recognition, 44 (8), 1708-1720.10.1016/j.patcog.2011.02.002Search in Google Scholar

[38] Lv, X.G., Song, Y.Z., Wang, S.X., Le, J. (2013). Image restoration with a high-order total variation minimization method. Applied Mathematical Modelling, 37 (16-17), 8210-8224.10.1016/j.apm.2013.03.028Search in Google Scholar

[39] Blondel, M., Seki, K., Uehara, K. (2013). Block coordinate descent algorithms for large-scale sparse multiclass classification. Machine Learning, 93 (1), 31-52.10.1007/s10994-013-5367-2Search in Google Scholar

[40] Qin, Z., Scheinberg, K., Goldfarb, D. (2013). Efficient block-coordinate descent algorithms for the group lasso. Mathematical Programming Computation, 5 (1), 143-169.10.1007/s12532-013-0051-xSearch in Google Scholar

[41] Tseng, P. (2001). Convergence of a block coordinate descent method for nondifferentiable minimization. Journal of Optimization Theory and Applications, 109 (3), 475-494.10.1023/A:1017501703105Search in Google Scholar

[42] Xu, Y., Yin, W. (2013). A block coordinate descent method for regularized multi-convex optimization with applications to nonnegative tensor factorization and completion. SIAM Journal on Imaging Sciences, 6 (3), 1758-1789.10.1137/120887795Search in Google Scholar

[43] Goldstein, T., Osher, S. (2009). The split Bregman method for L1-regularized problems. SIAM Journal on Imaging Sciences, 2 (2), 323-343. 10.1137/080725891Search in Google Scholar

eISSN:
1335-8871
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
6 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Technik, Elektrotechnik, Mess-, Steuer- und Regelungstechnik