Uneingeschränkter Zugang

The HPx software for multicomponent reactive transport during variably-saturated flow: Recent developments and applications


Zitieren

Aagaard, P., Helgeson, H.C., 1982. Thermodynamic and kinetic constraints on reaction rates among minerals and aqueous solutions, 1. Theoretical considerations. Am. J. Sci., 282, 237–285.10.2475/ajs.282.3.237Search in Google Scholar

Amos, R.T., Mayer, K.U., 2006. Investigating the role of gas bubble formation and entrapment in contaminated aquifers: Reactive transport modelling. J. Cont. Hydrol., 87, 123–154.10.1016/j.jconhyd.2006.04.008Search in Google Scholar

Appelo, C.A.J., Parkhurst, D.L., Post, V.E.A., 2014. Equations for calculating hydrogeochemical reactions of minerals and gases such as CO2 at high pressures and temperatures. Geochim. Cosmochim. Acta, 125, 49–67.10.1016/j.gca.2013.10.003Search in Google Scholar

Appelo, C.A.J., Wersin, P., 2007. Multicomponent diffusion modeling in clay systems with application to the diffusion of tritium, iodide, and sodium in Opalinus Clay. Env. Sci. Tech., 41, 5002–5007.10.1021/es0629256Open DOISearch in Google Scholar

Batlle-Aguilar, J., Brovelli, A., Porporato, A., Barry, D.A., 2011. Modelling soil carbon and nitrogen cycles during land use change: A review. Agron. Sust. Devel., 31, 251–274.10.1051/agro/2010007Search in Google Scholar

Bennacer, L., Ahfir, N.D., Alem, A., Wang, H.Q., 2017. Coupled effects of ionic strength, particle size, and flow velocity on transport and deposition of suspended particles in saturated porous media. Transp. Por. Med., 118, 251–269.10.1007/s11242-017-0856-6Search in Google Scholar

Bessinger, B.A., Marks, C.D., 2010. Treatment of mercurycontaminated soils with activated carbon: A laboratory, field, and modeling study. Remed., 21, 115–135.10.1002/rem.20275Search in Google Scholar

Bloom, S.A., Mansell, R.S., 2001. An algorithm for generating cation exchange isotherms from binary selectivity coefficients. Soil Sci. Soc. Am. J., 65, 1426–1429.10.2136/sssaj2001.6551426xOpen DOISearch in Google Scholar

Bond, W.J., 1995. On the Rothmund-Kornfeld description of cation exchange. Soil Sc. Soc. Am. J., 59, 436–443.10.2136/sssaj1995.03615995005900020024xSearch in Google Scholar

Borkovec, M., Westall, J., 1983. Solution of the Poisson-Boltzmann equation for surface excesses of ions in the diffuse layer at the oxide electrolyte interface. J. Elect. Chem., 150, 325–337.10.1016/S0022-0728(83)80214-9Search in Google Scholar

Bozorg, A., Gates, I.D., Sen, A., 2015a. Impact of biofilm on bacterial transport and deposition in porous media. J. Cont. Hydrol.,183, 109–120.10.1016/j.jconhyd.2015.10.00826583740Search in Google Scholar

Bozorg, A., Gates, I.D., Sen, A., 2015b. Using bacterial bioluminescence to evaluate the impact of biofilm on porous media hydraulic properties. J. Microb. Meth., 109, 84–92.10.1016/j.mimet.2014.11.01525479429Search in Google Scholar

Braakhekke, M.C., Beer, C., Hoosbeek, M.R., Reichstein, M., Kruijt, B., Schrumpf, M., Kabat, P., 2011. SOMPROF: A vertically explicit soil organic matter model. Ecol. Mod., 222, 1712–1730.10.1016/j.ecolmodel.2011.02.015Search in Google Scholar

Brantley, S., Goldhaber, M.B., Ragnarsdottir, K.V., 2007. Crossing disciplines and scales to understand the critical zone. Elements, 3, 307–314.10.2113/gselements.3.5.307Open DOISearch in Google Scholar

Brooks, R.H., Corey, A., 1964. Hydraulic properties of porous media. Hydrol. Paper No. 3, Colorado State Univ., Fort Collins, CO.Search in Google Scholar

Carles Brangarí, A., Sanchez-Vila, X., Freixa, A., M. Romaní, A., Rubol, S., Fernàndez-Garcia, D., 2017. A mechanistic model (BCC-PSSICO) to predict changes in the hydraulic properties for bio-amended variably saturated soils. Water Resour. Res., 53, 93–109.10.1002/2015WR018517Search in Google Scholar

Charlton, S.R., Parkhurst, D.L., 2011. Modules based on the geochemical model PHREEQC for use in scripting and programming languages. Comp. & Geosc., 37, 1653–1663.10.1016/j.cageo.2011.02.005Search in Google Scholar

Durner, W., 1994. Hydraulic conductivity estimation for soils with heterogeneous pore structure. Water Resour. Res., 30, 211–223.10.1029/93WR02676Open DOISearch in Google Scholar

Dzombak, D.A., Morel, F.M.M., 1990. Surface Complexation Modeling – Hydrous Ferric Oxide. John Wiley, New York.Search in Google Scholar

Freedman, V.L., Bacon, D.H., Saripalli, K.P., Meyer, P.D., 2004. A film depositional model of permeability for mineral reactions in unsaturated media. Vadose Zone J., 3, 1414–1424.10.2136/vzj2004.1414Open DOISearch in Google Scholar

Greskowiak, J., Gwo, J., Jacques, D., Yin, J., Mayer, K.U., 2015. A benchmark for multi-rate surface complexation and 1D dual-domain multi-component reactive transport of U(VI). Comp. Geosc., 19, 585–597.10.1007/s10596-014-9457-4Search in Google Scholar

Guggenheim, E.A., 1937. Theoretical basis of Raoult's law. Trans. Faraday Soc., 33, 151–159.10.1039/tf9373300151Search in Google Scholar

Haggerty, R., Gorelick, S.M., 1995. Multiple-rate mass transfer for modeling diffusion and surface reactions in media with pore-scale heterogeneity. Water Resour. Res., 31, 2383–2400.10.1029/95WR10583Open DOISearch in Google Scholar

Hiemstra, T., VanRiemsdijk, W.H., 1996. A surface structural approach to ion adsorption: The charge distribution (CD) model. J. Col. Int. Sci., 179, 488–508.10.1006/jcis.1996.0242Search in Google Scholar

Hommel, J., Lauchnor, E., Phillips, A., Gerlach, R., Cunningham, A.B., Helmig, R., Ebigbo, A., Class, H., 2015. A revised model for microbially induced calcite precipitation: Improvements and new insights based on recent experiments. Water Resour. Res., 51, 3695–3715.10.1002/2014WR016503Search in Google Scholar

Jacques, D., 2009. Benchmarking of the cement model and detrimental chemical reactions including temperature dependent parameters. Project near surface disposal of category A waste at Dessel, NIRAS-MP5-03 DATA-LT(NF) Version 1.Search in Google Scholar

Jacques, D., Šimůnek, J., 2005. User Manual of the Multicomponent Variably-Saturated Flow and Transport Model HP1. SCK•CEN-BLG-998.Search in Google Scholar

Jacques, D., Šimůnek, J., Mallants, D., van Genuchten, M.T., 2006. Operator-splitting errors in coupled reactive transport codes for transient variably saturated flow and contaminant transport in layered soil profiles. J. Contam. Hydrol., 88, 197–218.10.1016/j.jconhyd.2006.06.00816919364Open DOISearch in Google Scholar

Jacques, D., Šimůnek, J., Mallants, D., van Genuchten, M.T., 2008a. Modeling coupled hydrologic and chemical processes: Long-term uranium transport following phosphorus fertilization. Vadose Zone J., 7, 698–711.10.2136/vzj2007.0084Open DOISearch in Google Scholar

Jacques, D., Šimůnek, J., Mallants, D., van Genuchten, M.T., 2008b. Modelling coupled water flow, solute transport and geochemical reactions affecting heavy metal migration in a podzol soil. Geoderma, 145, 449–461.10.1016/j.geoderma.2008.01.009Search in Google Scholar

Jacques, D., Smith, C., Simůnek, J., Smiles, D., 2012. Inverse optimization of hydraulic, solute transport, and cation exchange parameters using HP1 and UCODE to simulate cation exchange. J. Contam. Hydrol., 142–143, 109–125.10.1016/j.jconhyd.2012.03.00822541896Search in Google Scholar

Jarvis, N.J., Taylor, A., Larsbo, M., Etana, A., Rosen, K., 2010. Modelling the effects of bioturbation on the re-distribution of 137Cs in an undisturbed grassland soil. Eur. J. Soil Sci., 61, 24–34.10.1111/j.1365-2389.2009.01209.xOpen DOISearch in Google Scholar

Jenkinson, D.S., Andrew, S.P.S., Lynch, J.M., Goss, J.M., Tinker, P.B., 1990. The turnover of organic carbon and nitrogen in soil. Philosoph. Trans., 329, 361–368.10.1098/rstb.1990.0177Search in Google Scholar

Kosugi, K., 1996. Lognormal distribution model for unsaturated soil hydraulic properties. Water Resour. Res., 32, 2697–2703.10.1029/96WR01776Open DOISearch in Google Scholar

Laliberté, M., 2007. Model for calculating the viscosity of aqueous solutions. J. Chem. Eng. Data, 52, 321-335.10.1021/je0604075Open DOISearch in Google Scholar

Laliberté, M., Cooper, W.E., 2004. Model for calculating the density of aqueous electrolyte solutions. J. Chem. Eng. Data, 49, 1141–1151.10.1021/je0498659Search in Google Scholar

Leterme, B., Blanc, P., Jacques, D., 2014. A reactive transport model for mercury fate in soil—application to different anthropogenic pollution sources. Environ. Sci. Pollut. Res., 12279–12293.10.1007/s11356-014-3135-x24928379Open DOISearch in Google Scholar

Leterme, B., Jacques, D., 2015. A reactive transport model for mercury fate in contaminated soil-sensitivity analysis. Environ. Sci. Pollut. Res., 22, 16830–16842.10.1007/s11356-015-4876-x26099598Search in Google Scholar

Li, L., Maher, K., Navarre-Sitchler, A., Druhan, J., Meile, C., Lawrence, C., Moore, J., Perdrial, J., Sullivan, P., Thompson, A., Jin, L., Bolton, E.W., Brantley, S.L., Dietrich, W.E., Mayer, K.U., Steefel, C.I., Valocchi, A., Zachara, J., Kocar, B., McIntosh, J., Tutolo, B.M., Kumar, M., Sonnenthal, E., Bao, C., Beisman, J., 2017. Expanding the role of reactive transport models in critical zone processes. Earth Sci. Rev., 165, 280–301.10.1016/j.earscirev.2016.09.001Search in Google Scholar

Liu, S., Jacques, D., Govaerts, J., Wang, L., 2014. Conceptual model analysis of interaction at a concrete-Boom Clay interface. Phys. Chem. Earth, 70–71, 150–159.10.1016/j.pce.2013.11.009Search in Google Scholar

Maes, N., Wang, L., Hicks, T., Bennett, D., Warwick, P., Hall, T., Walker, G., Dierckx, A., 2006. The role of natural organic matter in the migration behaviour of americium in the Boom Clay - Part I: Migration experiments. Phys. Chem. Earth, 31, 541–547.10.1016/j.pce.2006.04.006Open DOISearch in Google Scholar

Makselon, J., Zhou, D., Engelhardt, I., Jacques, D., Klumpp, E., 2017. Experimental and numerical investigations of silver nanoparticle transport under variable flow and ionic strength in soil. Envir. Sci. Techn., 51, 2096–2104.10.1021/acs.est.6b0488228177254Search in Google Scholar

Mallants, D., Šimůnek, J., van Genuchten, M.T., Jacques, D., 2017. Simulating the fate and transport of coal seam gas chemicals in variably-saturated soils using HYDRUS. Water, 9, 6, 385.10.3390/w9060385Search in Google Scholar

Manzoni, S., Porporato, A., 2009. Soil carbon and nitrogen mineralization: Theory and models across scales. Soil Biol. Biochem., 41, 1355–1379.10.1016/j.soilbio.2009.02.031Open DOISearch in Google Scholar

Martinez, B.C., DeJong, J.T., Ginn, T.R., 2014. Biogeochemical reactive transport modeling of microbial induced calcite precipitation to predict the treatment of sand in one-dimensional flow. Comp. Geotech., 58, 1–13.10.1016/j.compgeo.2014.01.013Search in Google Scholar

Mayer, K.U., Alt-Epping, P., Jacques, D., Arora, B., Steefel, C.I., 2015. Benchmark problems for reactive transport modeling of the generation and attenuation of acid rock drainage. Comp. Geosci., 19, 599–611.10.1007/s10596-015-9476-9Search in Google Scholar

Mayer, K.U., Frind, E.O., Blowes, D.W., 2002. Multicomponent reactive transport modeling in variably saturated porous media using a generalized formulation for kinetically controlled reactions. Water Resour. Res., 38, 1174, DOI: 1110.1029/2001WR000862.Search in Google Scholar

Mays, D.C., Hunt, J.R., 2007. Hydrodynamic and chemical factors in clogging by montmorillonite in porous media. Envir. Sci. Techn., 41, 5666–5671.10.1021/es062009sSearch in Google Scholar

Meysman, F.J.R., Boudreau, B.P., Middelburg, J.J., 2003a. Relations between local, nonlocal, discrete and continuous models of bioturbation. J. Mar. Res., 61, 391–410.10.1357/002224003322201241Open DOISearch in Google Scholar

Meysman, F.J.R., Boudreau, B.P., Middelburg, J.J., 2005. Modeling reactive transport in sediments subject to bioturbation and compaction. Geochim. Cosmochim. Acta, 69, 3601–3617.10.1016/j.gca.2005.01.004Search in Google Scholar

Meysman, F.J.R., Middelburg, J.J., Herman, P.M.J., Heip, C.H.R., 2003b. Reactive transport in surface sediments. I. Model complexity and software quality. Comp. Geosci., 29, 291–300.10.1016/S0098-3004(03)00006-2Search in Google Scholar

Millington, R.J., Quirk, J.P., 1961. Permeability of porous solids. Trans. Faraday Soc., 57, 1200–1206.10.1039/tf9615701200Open DOISearch in Google Scholar

Nowack, B., Mayer, K.U., Oswald, S.E., van Beinum, W., Appelo, C.A.J., Jacques, D., Seuntjens, P., Gérard, F., Jaillard, B., Schnepf, A., Roose, T., 2006. Verification and intercomparison of reactive transport codes to describe rootuptake. Plant and Soil, 285, 305–321.10.1007/s11104-006-9017-3Search in Google Scholar

Or, D., Smets, B.F., Wraith, J.M., Dechesne, A., Friedman, S.P., 2007. Physical constraints affecting bacterial habitats and activity in unsaturated porous media – a review. Adv. Wat. Res., 30, 1505–1527.10.1016/j.advwatres.2006.05.025Search in Google Scholar

Paradelo, M., Perez-Rodriguez, P., Fernandez-Calvino, D., Arias-Estevez, M., Lopez-Periago, J.E., 2012. Coupled transport of humic acids and copper through saturated porous media. Eur. J. Soil Sci., 63, 708–716.10.1111/j.1365-2389.2012.01481.xOpen DOISearch in Google Scholar

Parkhurst, D.L., Appelo, C.A.J., 2013. Description of Input and Examples for PHREEQC Version 3 – A Computer Program for Speciation, Batch-Reaction, One-Dimensional Transport, and Inverse Geochemical Calculations. Chapter 43 of Section A. Groundwater Book 6, Modeling Techniques.10.3133/tm6A43Search in Google Scholar

Parkhurst, D.L., Wissmeier, L., 2015. PhreeqcRM: A reaction module for transport simulators based on the geochemical model PHREEQC. Adv. Wat. Res., 83, 176–189.10.1016/j.advwatres.2015.06.001Search in Google Scholar

Patel, R., Phung, Q.T., Seetharam, S.C., Perko, J., Jacques, D., Maes, N., De Schutter, G., Ye, G., van Breugel, K., 2016. Diffusivity of saturated ordinary Portland cement-based materials: A critical review of experimental and analytical modelling approaches. Cem. Con. Res., 90, 52–72.10.1016/j.cemconres.2016.09.015Search in Google Scholar

Peng, D.-Y., Robinson, D.B., 1976. A new two-constant equation of state. Ind. Eng. Chem. Fund., 15, 59–64.10.1021/i160057a011Search in Google Scholar

Phung, Q.T., Maes, N., Jacques, D., De Schutter, G., Ye, G., Perko, J., 2016. Modelling the carbonation of cement pastes under a CO2 pressure gradient considering both diffusive and convective transport. Const. Build. Mat., 114, 333–351.10.1016/j.conbuildmat.2016.03.191Search in Google Scholar

Porporato, A., D'Odorico, P., Laio, F., Rodriguez-Iturbe, I., 2003. Hydrologic controls on soil carbon and nitrogen cycles. I. Modeling scheme. Adv. Wat. Res., 26, 45–58.10.1016/S0309-1708(02)00094-5Search in Google Scholar

Puigdomènech, I., Rard, J.A., Plyasunov, A.V., Grenthe, I., 1997. Temperature corrections to thermodynamic data and enthalpy calculations. In: Grenthe, I., PuigdomSnech, I. (Eds.): OECD Nuclear Chemistry, Paris, pp. 427–493.Search in Google Scholar

Riley, W.J., Maggi, F., Kleber, M., Torn, M.S., Tang, J.Y., Dwivedi, D., Guerry, N., 2014. Long residence times of rapidly decomposable soil organic matter: application of a multi-phase, multi-component, and vertically resolved model (BAMS1) to soil carbon dynamics. Geosci. Model Dev., 7, 1335–1355.10.5194/gmd-7-1335-2014Search in Google Scholar

Rockhold, M.L., Yarwood, R.R., Niemat, M.R., Bottomley, P.J., Selker, J.S., 2002. Considerations for modeling bacterial-induced changes in hydraulic properties of variably saturated porous media. Adv. Wat. Res., 25, 477–495.10.1016/S0309-1708(02)00023-4Search in Google Scholar

Schmidt, M.W.I., Torn, M.S., Abiven, S., Dittmar, T., Guggenberger, G., Janssens, I.A., Kleber, M., Kogel-Knabner, I., Lehmann, J., Manning, D.A.C., Nannipieri, P., Rasse, D.P., Weiner, S., Trumbore, S.E., 2011. Persistence of soil organic matter as an ecosystem property. Nature, 478, 49–56.10.1038/nature1038621979045Search in Google Scholar

Seuntjens, P., Nowack, B., Schulin, R., 2004. Root-zone modeling of heavy metal uptake and leaching in the presence of organic ligands. Plant and Soil, 265, 61–73.10.1007/s11104-005-8470-8Search in Google Scholar

Sharqawy, M.H., Lienhard V, J.H., Zubair, S.M., 2010. Thermophysical properties of seawater: A review of existing correlations and data. Desal. Wat. Treat., 16, 354–380.10.5004/dwt.2010.1079Search in Google Scholar

Sierra, C.A., Müller, M., Trumbore, S.E., 2012. Models of soil organic matter decomposition: the SoilR package, version 1.0. Geosci. Model Dev., 5, 1045–1060.10.5194/gmd-5-1045-2012Search in Google Scholar

Silberbush, M., Ben-Asher, J., Ephrath, J.E., 2005. A model for nutrient and water flow and their uptake by plants grown in a soilless culture. Plant and Soil, 271, 309–319.10.1007/s11104-004-3093-zSearch in Google Scholar

Šimůnek, J., He, C., Pang, L., Bradford, S.A., 2006. Colloidfacilitated solute transport in variably saturated porous media: Numerical model and experimental verification. Vadose Zone J., 5, 1035–1047.10.2136/vzj2005.0151Open DOISearch in Google Scholar

Šimůnek, J., Hopmans, J.W., 2009. Modeling compensated root water and nutrient uptake. Ecol. Mod., 220, 505–521.10.1016/j.ecolmodel.2008.11.004Search in Google Scholar

Šimůnek, J., Jacques, D., Šejna, M., van Genuchten, M.T., 2012. The HP2 Program for HYDRUS (2D/3D). A Coupled Code for Simulating Two-Dimensional Variably-Saturated Water Flow, Head Transport, Solute Transport Flow, and Biogeochemistry in Porous Media. (HYDRUS+PHREEQC+2D), Version 1.Search in Google Scholar

Simunek, J., Sejna, M., Saito, H., Sakai, K., van Genuchten, M.T., 2013. The HYDRUS-1D Software Package for Simulating the Movement of Water, Heat, and Multiple Solutes in Variably Saturated Media. Version 4.17. HYDRUS Software Series 3. Department of Environmental Sciences, University of California Riverside, Riverside, California, USA.Search in Google Scholar

Šimůnek, J., van Genuchten, M.T., 2008. Modeling nonequilibrium flow and transport processes using HYDRUS. Vadose Zone J., 7, 782–797.10.2136/vzj2007.0074Open DOISearch in Google Scholar

Šimůnek, J., van Genuchten, M.T., Šejna, M., 2016. Recent developments and applications of the HYDRUS Computer Software Packages. Vadose Zone J., 15, DOI: 10.2136/vzj2016.04.0033.10.2136/vzj2016.04.0033Open DOISearch in Google Scholar

Steefel, C.I., Appelo, C.A.J., Arora, B., Jacques, D., Kalbacher, T., Kolditz, O., Lagneau, V., Lichtner, P.C., Mayer, K.U., Meeussen, J.C.L., Molins, S., Moulton, D., Shao, H., Šimůnek, J., Spycher, N., Yabusaki, S.B., Yeh, G.T., 2015. Reactive transport codes for subsurface environmental simulation. Comp. Geosci., 19, 445–478.10.1007/s10596-014-9443-xSearch in Google Scholar

Steefel, C.I., DePaolo, D.J., Lichtner, P.C., 2005. Reactive transport modeling: An essential tool and a new research approach for the Earth sciences. Earth Plan. Sci. Let., 240, 539–558.10.1016/j.epsl.2005.09.017Search in Google Scholar

Tang, J., Riley, W.J., 2015. Weaker soil carbon-climate feedbacks resulting from microbial and abiotic interactions. Nature Clim. Change, 5, 56–60.10.1038/nclimate2438Search in Google Scholar

Tang, J.Y., Riley, W.J., Koven, C.D., Subin, Z.M., 2013. CLM4-BeTR, a generic biogeochemical transport and reaction module for CLM4: model development, evaluation, and application. Geosci. Model Dev., 6, 127–140.10.5194/gmd-6-127-2013Search in Google Scholar

Thaysen, E.M., Jacques, D., Jessen, S., Andersen, C.E., Laloy, E., Ambus, P., Postma, D. and Jakobsen, I., 2014. Inorganic carbon fluxes across the vadose zone of planted andunplanted soil mesocosms. Biogeosci., 11, 7179–7192.10.5194/bg-11-7179-2014Search in Google Scholar

Todd-Brown, K.E.O., Randerson, J.T., Post, W.M., Hoffman, F.M., Tarnocai, C., Schuur, E.A.G., Allison, S.D., 2013. Causes of variation in soil carbon simulations from CMIP5 Earth system models and comparison with observations. Biogeosci., 10, 1717–1736.10.5194/bg-10-1717-2013Search in Google Scholar

Valdes-Abellan, J., Jiménez-Martínez, J., Candela, L., Jacques, D., Kohfahl, C., Tamoh, K., 2017. Reactive transport modelling to infer changes in soil hydraulic properties induced by non-conventional water irrigation. J. Hydrol., 549, 114–124.10.1016/j.jhydrol.2017.03.061Search in Google Scholar

van Genuchten, M.T., 1980. Closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J., 44, 892–898.10.2136/sssaj1980.03615995004400050002xOpen DOISearch in Google Scholar

Vereecken, H., Schnepf, A., Hopmans, J.W., Javaux, M., Or, D., Roose, T., Vanderborght, J., Young, M.H., Amelung, W., Aitkenhead, M., Allison, S.D., Assouline, S., Baveye, P., Berli, M., Brüggemann, N., Finke, P., Flury, M., Gaiser, T., Govers, G., Ghezzehei, T., Hallett, P., Hendricks Franssen, H.J., Heppell, J., Horn, R., Huisman, J.A., Jacques, D., Jonard, F., Kollet, S., Lafolie, F., Lamorski, K., Leitner, D., McBratney, A., Minasny, B., Montzka, C., Nowak, W., Pachepsky, Y., Padarian, J., Romano, N., Roth, K., Rothfuss, Y., Rowe, E.C., Schwen, A., Šimůnek, J., Tiktak, A., Van Dam, J., van der Zee, S.E.A.T.M., Vogel, H.J., Vrugt, J.A., Wöhling, T., Young, I.M., 2016. Modeling soil processes: Review, key challenges, and new perspectives. Vadose Zone J., 15, 1–57.10.2136/vzj2015.09.0131Search in Google Scholar

Vogel, T., Cislerova, M., Hopmans, J.W., 1991. Porous media with linearly variable hydraulic properties. Water Resour. Res., 27, 2735–2741.10.1029/91WR01676Open DOISearch in Google Scholar

Wissmeier, L., Barry, D.A., 2009. Effect of mineral reactions on the hydraulic properties of unsaturated soils: Model development and application. Adv. Wat. Res., 32, 1241–1254.10.1016/j.advwatres.2009.05.004Search in Google Scholar

Wissmeier, L., Barry, D.A., 2010. Implementation of variably saturated flow into PHREEQC for the simulation of biogeochemical reactions in the vadose zone. Env. Mod. Soft., 25, 526–538.10.1016/j.envsoft.2009.10.001Search in Google Scholar

Wutzler, T., Reichstein, M., 2008. Colimitation of decomposition by substrate and decomposers - a comparison of model formulations. Biogeosci., 5, 749–759.10.5194/bg-5-749-2008Search in Google Scholar

Xie, M., Mayer, K.U., Claret, F., Alt-Epping, P., Jacques, D., Steefel, C., Chiaberge, C., Šimůnek, J., 2015. Implementation and evaluation of permeability-porosity and tortuosity-porosity relationships linked to mineral dissolution-precipitation. Comp. Geosci., 19, 655–671.10.1007/s10596-014-9458-3Search in Google Scholar

Yarwood, R.R., Rockhold, M.L., Niemet, M.R., Selker, J.S., Bottomley, P.J., 2006. Impact of microbial growth on water flow and solute transport in unsaturated porous media. Water Resour. Res., 42, W10405, 1–11.10.1029/2005WR004550Search in Google Scholar

Yu, C., Muñoz-Carpena, R., Gao, B., Perez-Ovilla, O., 2013. Effects of ionic strength, particle size, flow rate, and vegetation type on colloid transport through a dense vegetation saturated soil system: Experiments and modeling. J. Hydrol., 499, 316–323.10.1016/j.jhydrol.2013.07.004Search in Google Scholar

Zhou, D., Thiele-Bruhn, S., Arenz-Leufen, M.G., Jacques, D., Lichtner, P., Engelhardt, I., 2016. Impact of manure-related DOM on sulfonamide transport in arable soils. J. Contam. Hydrol., 192, 118–128.10.1016/j.jconhyd.2016.07.00527450276Search in Google Scholar

eISSN:
0042-790X
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Technik, Einführungen und Gesamtdarstellungen, andere