Zitieren

ASTM C1138M-12, 2012. Standard Test Method for Abrasion Resistance of Concrete (Underwater Method). ASTM International, West Conshohocken, PA.Search in Google Scholar

Cheng, N.S., Law, A.W.K., 2003. Exponential formula for computing effective viscosity. Powder Technol., 129, 156-160.10.1016/S0032-5910(02)00274-7Search in Google Scholar

Clark, H. McI, 2002. Particle velocity and size effects in laboratory slurry erosion measurements OR... do you know what your particles are doing? Tribol. Int., 35, 617-624.10.1016/S0301-679X(02)00052-XSearch in Google Scholar

Cooke, R., 1996. Pipeline material evaluation for the Mina Grande hydrohoist system. In: Proc. 13th Int. Conf. on Hydrotransport, Johannesburg, South Africa, pp. 455-477.Search in Google Scholar

Dalfré Filho, J.G., Genovez, A.I.B., Paulon, W.A., 2000. Wear in hydraulic structures and concrete resistance to water-solid mixture. Ingeniería Estructural, 8, 20, 18-22. (In Portuguese.)Search in Google Scholar

Dandapat, R., Deb, A., 2016. A probability based model for the erosive wear of concrete by sediment bearing water. Wear, 350-351, 165-181.10.1016/j.wear.2016.01.012Search in Google Scholar

Fokema, M.D., Kresta, S.M., Wood, P.E., 1994. Importance of using the correct impeller boundary conditions for CFD simulations of stirred tanks. Can. J. Chem. Eng., 72, 177-183.10.1002/cjce.5450720201Search in Google Scholar

Gnanavelu, A., Kapur, N., Neville, A., Flores, J.F., Ghorbani, N., 2011. A numerical investigation of a geometry independent integrated method to predict erosion rates in slurry erosion. Wear, 271, 712-719.10.1016/j.wear.2010.12.040Search in Google Scholar

Graham, J.R., 1998. Erosion of concrete in hydraulic structures. Reported by ACI Committee 210, ACI manual practice, Part 1.Search in Google Scholar

Horszczaruk, E.K., 2000. Abrasion-erosion of concrete. Arch. Civ. Eng., 46, 585-609.Search in Google Scholar

Horszczaruk, E.K., 2004. The model of abrasive wear of concrete in hydraulic structures. Wear, 256, 787-796.10.1016/S0043-1648(03)00525-8Search in Google Scholar

Horszczaruk, E.K., 2005. Abrasion resistance of high-strength concrete in hydraulic structures. Wear, 259, 62-69.10.1016/j.wear.2005.02.079Search in Google Scholar

Horszczaruk, E.K, 2008. Mathematical model of abrasive wear of high performance concrete. Wear, 264, 113-118.10.1016/j.wear.2006.12.008Search in Google Scholar

Horszczaruk, E.K., 2009. Hydro-abrasive erosion of high performance fiber-reinforced concrete. Wear, 267, 1-4, 110-115.10.1016/j.wear.2008.11.010Search in Google Scholar

Jirout, T., Rieger, F., 2011. Impeller design for mixing of suspensions. Chem. Eng. Res. Des., 89, 1144-1151.10.1016/j.cherd.2010.12.005Search in Google Scholar

Kumar, R.G.B., Sharma, U.K., 2014. Abrasion resistance of concrete containing marginal aggregates. Construction and Building Materials, 66, 712-722. 10.1016/j.conbuildmat.2014.05.084Search in Google Scholar

Launder, B.E., Spalding, D.B., 1972. Mathematical Models of Turbulence. Academic Press, London.Search in Google Scholar

Launder, B.E., Spalding, D.B., 1974. The numerical computation of turbulent flows. Comput. Meth. Appl. Mech. Eng., 3, 269-289.10.1016/0045-7825(74)90029-2Open DOISearch in Google Scholar

Liu, Y.W, Yen, T., Hsu, T.H., 2006. Abrasion erosion of concrete by water-borne sand. Cem. Concr. Res., 36, 1814-1820.10.1016/j.cemconres.2005.03.018Search in Google Scholar

Liu, Y.W, Cho, S.W., Hsu, T.H., 2012. Impact abrasion of hydraulic structures concrete. J. Mar. Sci. Tech.-Japan, 20, 3, 253-258.10.51400/2709-6998.1801Search in Google Scholar

Mak, A.T.C., 1992. Solid-liquid mixing in mechanically-agitated vessels. PhD Thesis. University College, London UK.Search in Google Scholar

Mansouri, A., Arabnejad, H., Shirazi, S.A., McLaury, B.S., 2015. A combined CFD/experimental methodology for erosion prediction. Wear, 332-333, 1090-1097.10.1016/j.wear.2014.11.025Search in Google Scholar

Messa, G.V., Malavasi, S., 2014a. Computational investigation of liquid-solid slurry flow through an expansion in a rectangular duct. J. Hydrol. Hydromech., 62, 234-240.10.2478/johh-2014-0021Search in Google Scholar

Messa, G.V., Malavasi, S., 2014b. Numerical prediction of particle distribution of solid-liquid slurries in straight pipies and bends. Eng. Appl. Comput. Fluid Mech., 8, 3, 356-372.10.1080/19942060.2014.11015521Search in Google Scholar

Messa, G.V., Malavasi, S., 2015. Improvements in the numerical prediction of fully-suspended slurry flow in horizontal pipes. Powder Technol., 270, 358-367.10.1016/j.powtec.2014.10.027Search in Google Scholar

Messa, G.V., Malavasi, S., 2017. The effect of sub-models and parameterizations in the simulation of abrasive jet impingement tests. Wear, 370-371, 59-72.10.1016/j.wear.2016.10.022Search in Google Scholar

Messa, G.V., Malin, M., Malavasi S., 2013. Numerical prediction of pressure gradient of slurry flows in horizontal pipes. In: Proc. ASME Pressure Vessels and Piping PVP2013 Conf. (Paris, France). Paper No. PVP2013-97460.10.1115/PVP2013-97460Search in Google Scholar

Messa, G.V., Malin, M., Malavasi S., 2014. Numerical prediction of fully-suspended slurry flow in horizontal pipes. Powder Technol., 256, 61-70. 10.1016/j.powtec.2014.02.005Search in Google Scholar

Mohebi, R., Behfarnia, K., Shojaei, M., 2015. Abrasion resistance of alkali-activated slag concrete designed by Taguchi method. Constr. Build. Mater., 98, 792-798.10.1016/j.conbuildmat.2015.08.128Search in Google Scholar

NBR 5738, 2003. Moulding and cure of concrete cylindrical and prismatic test pieces. ABNT-Brazilian Association for Technical Standards, Rio de Janeiro, Brazil.Search in Google Scholar

Parsi, M., Najmi, K., Najafifard, F., Hassani, S., McLaury, B.S., Shirazi, S.A., 2014. A comprehensive review of solid particle erosion modeling for oil and gas wells and pipelines applications. J. Nat. Gas Sci. Eng., 21, 850-873.10.1016/j.jngse.2014.10.001Open DOISearch in Google Scholar

Picardi, R., Zhao, L., Battaglia, F., 2016. On the ideal grid resolution for two-dimensional eulerian modeling of gas-liquid flows. ASME J. Fluids Eng., 138, No. 114503.10.1115/1.4033561Search in Google Scholar

Shiller, L., Naumann, A., 1935. A drag coefficient correlation. Z. Ver. Dtsch. Ing., 77, 318-320.Search in Google Scholar

Spalding, D.B., 1972. A novel finite-difference formulation for differential expresions involving both first and second derivatives. Int. J. Numer. Methods Eng., 4, 551-559.10.1002/nme.1620040409Open DOISearch in Google Scholar

Spalding, D.B., 1980. Numerical computation of multi-phase fluid flow and heat transfer. In: Taylor, C., Morgan, K. (Eds.): Recent Advances in Numerical Methods in Fluids. Pineridge Press Limited, Swansea.Search in Google Scholar

Yen, T.Y., Hsu, T.H., Liu, Y.W., Chen, S.H., 2007. Influence of class F fly ash on the abrasion-erosion resistance of high-strength concrete. Constr. Build. Mater., 21, 2007, 458-463.10.1016/j.conbuildmat.2005.06.051Open DOISearch in Google Scholar

Zwietering, T.N., 1958. Suspending of solid particles in liquid by agitators. Chem. Eng. Sci., 8, 244-253.10.1016/0009-2509(58)85031-9Search in Google Scholar

eISSN:
0042-790X
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Technik, Einführungen und Gesamtdarstellungen, andere