Uneingeschränkter Zugang

Application and recalibration of soil water retention pedotransfer functions in a tropical upstream catchment: case study in Bengawan Solo, Indonesia


Zitieren

Abdelbaki, A.M., 2015. Using automatic calibration method for optimizing the performance of Pedotransfer functions of saturated hydraulic conductivity. Ain Shams Engineering Journal, 7, 2, 653–662.10.1016/j.asej.2015.05.012Search in Google Scholar

Adhikary, P.P., Chakraborty, D., Kalra, N., Sehgal, M., 2008. Pedotransfer functions for predicting the hydraulic properties of Indian soils. Australian Journal of Soil Research, 46, 5, 476.10.1071/SR07042Search in Google Scholar

Aina, P.O., Periaswamy, S.P., 1985. Estimating available water-holding capacity of western nigerian soils from soil texture and bulk density, using core and sieved samples. Soil Science, 140, 1, 55–58.10.1097/00010694-198507000-00007Search in Google Scholar

Bell, M.A., van Keulen, H., 1995. Soil Pedotransfer Functions for Four Mexican Soils. Soil Science Society of America Journal, 59, 3, 865.10.2136/sssaj1995.03615995005900030034xSearch in Google Scholar

Beretta, A.N., Silbermann, A.V., Paladino, L., Torres, D., Bassahun, D., Musselli, R., García-Lamohte, A., 2014. Soil texture analyses using a hydrometer: modification of the Bouyoucos method. Ciencia e Investigación Agraria, 41, 2, 263–271.10.4067/S0718-16202014000200013Search in Google Scholar

Bittelli, M., Flury, M., 2009. Errors in water retention curves determined with pressure plates. Soil Science Society of America Journal, 73, 5, 1453.Search in Google Scholar

Blasone, R.S., Madsen, H., Rosbjerg, D., 2006. Comparison of parameter estimation algorithm in hydrological modelling. In: Proceedings of ModelCARE’2005. IAHS Press, Wallingford, p. 67–72.Search in Google Scholar

Botula, Y.D., 2013. Indirect Methods to Predict Hydrophysical Properties of Soils of Lower Congo. Ghent University, Ghent, 236 p.Search in Google Scholar

Botula, Y.D., Cornelis, W.M., Baert, G., Van Ranst, E., 2012. Evaluation of pedotransfer functions for predicting water retention of soils in Lower Congo (D.R. Congo). Agricultural Water Management, 111, 1–10.10.1016/j.agwat.2012.04.006Search in Google Scholar

Bouma, J., 1989. Using soil survey data for quantitative land evaluation. In: Advances in Soil Science. Springer, New York, pp. 177–213.10.1007/978-1-4612-3532-3_4Search in Google Scholar

Dijkerman, J.C., 1988. An Ustult-Aquult-Tropept catena in Sierra Leone, West Africa, II. Land qualities and land evaluation. Geoderma, 42, 1, 29–49.10.1016/0016-7061(88)90021-3Search in Google Scholar

Duan, Q., Sorooshian, S., Gupta, V.K., 1994. Optimal use of the SCE-UA global optimization method for calibrating watershed models. Journal of Hydrology, 158, 3–4, 265–284.10.1016/0022-1694(94)90057-4Search in Google Scholar

Durner, W., Lipsius, K., 2006. Determining Soil Hydraulic Properties. In: Encyclopedia of Hydrological Sciences. John Wiley & Sons.10.1002/0470848944.hsa077bSearch in Google Scholar

Feddes, R.A., de Rooij, G.H., van Dam J.C. (Eds.), 2004. Unsaturated-Zone Modeling : Progress, Challenges and Applications. Kluwer Acad. Publ., 364 p.Search in Google Scholar

Fila, G., Donatelli, M., Bellocchi, G., 2006. PTFIndicator: An IRENE_DLL-based application to evaluate estimates from pedotransfer functions by integrated indices. Environmental Modelling & Software, 21, 1, 107–110.10.1016/j.envsoft.2005.01.001Search in Google Scholar

Gee, G.W., Bauder, J.W., 1986. Particle-size analysis. In: Klute, A. (Ed.): Methods of Soil Analysis. Part 1: Physical and Mineralogical Methods. Soil Science Society of America, American Society of Agronomy, Madison, WI, pp. 383–411.10.2136/sssabookser5.1.2ed.c15Search in Google Scholar

Grossman, R.B., Reinsch, T.G., 2002. The solid phase. In: Dane, J.H., Topp, C.G. (Eds.): Methods of Soil Analysis. Part 4: Physical Methods. Soil Science Society of America, American Society of Agronomy, Madison, WI, pp. 201–228.Search in Google Scholar

Hartemink, A.E., 2002. Soil science in tropical and temperate regions-some differences and similarities. Advances in Agronomy, 77, 269–292.10.1016/S0065-2113(02)77016-8Search in Google Scholar

Hodnett, M.G., da Silva, L.P., da Rocha, H.R., Cruz Senna, R., 1995. Seasonal soil water storage changes beneath central Amazonian rainforest and pasture: Journal of Hydrology, 170, 1–4, 233–254.10.1016/0022-1694(94)02672-XSearch in Google Scholar

Hodnett, M.G., Tomasella, J., 2002. Marked differences between van Genuchten soil water-retention parameters for temperate and tropical soils: a new water-retention pedotransfer functions developed for tropical soils. Geoderma, 108, 3, 155–180.10.1016/S0016-7061(02)00105-2Search in Google Scholar

Hopmans, J.W., Schoups, G., 2006. Soil Water Flow at Different Spatial Scales. In: Encyclopedia of Hydrological Sciences: John Wiley & Sons.10.1002/0470848944.hsa070Search in Google Scholar

Lal, R., 1979. Physical properties and moisture retention characteristics of some nigerian soils. Geoderma, 21, 3, 209–223.10.1016/0016-7061(78)90028-9Search in Google Scholar

Lavigne, F., Gunnell, Y., 2006. Land cover change and abrupt environmental impacts on Javan volcanoes, Indonesia: a long-term perspective on recent events. Regional Environmental Change, 6, 1–2, 86–100.10.1007/s10113-005-0009-2Search in Google Scholar

Maeda, T., Takenaka, H., Warkentin, B.P., 1977. Physical properties of allophane soils. Advances in Agronomy, 29, C, 229–264.10.1016/S0065-2113(08)60220-5Search in Google Scholar

Manrique, L.A., Jones, C.A., Dyke, P.T., 1991. Predicting soil water retention characteristics from soil physical and chemical properties. Communications in Soil Science and Plant Analysis, 22, 17–18, 1847–1860.10.1080/00103629109368540Search in Google Scholar

McBratney, A.B., Minasny, B., Cattle, S.R., Vervoort, R.W., 2002. From pedotransfer functions to soil inference systems. Geoderma, 109, 1–2, 41–73.10.1016/S0016-7061(02)00139-8Search in Google Scholar

Minasny, B., Hartemink, A.E., 2011. Predicting soil properties in the tropics. Earth-Science Reviews, 106, 1, 52–62.10.1016/j.earscirev.2011.01.005Search in Google Scholar

Nelson, D.W., Sommers, L.E., 1996. Total carbon, organic carbon, and organic matter. In: Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H. (Eds.): Methods of Soil Analysis. Part 3: Chemical Methods. Soil Science Society of America, American Society of Agronomy, Madison, WI, pp. 961–1010.10.2136/sssabookser5.3.c34Search in Google Scholar

Nguyen, P.M., Van Le, K., Botula, Y.-D., Cornelis, W.M., 2015. Evaluation of soil water retention pedotransfer functions for Vietnamese Mekong Delta soils. Agricultural Water Management, 158, 126–138.10.1016/j.agwat.2015.04.011Search in Google Scholar

Nugroho, P., 2015. Model soil water assessment tool (SWAT) untuk prediksi laju erosi dan sedimentasi sub das Keduang Kabupaten Wonogiri (SWAT model for erosion rate prediction in the Keduang sub catchment, Wonogiri residence). Universitas Muhammadiyah, Surakarta, 85 p.Search in Google Scholar

Oldhoff, R.J.J., 2015. Local and catchment scale validation of soil hydraulic pedotransfer functions for an Indonesian watershed. University of Twente, Enschede, 96 p.Search in Google Scholar

Pachepsky, Y., Rawls, W.J., (Eds.), 2004. Development of Pedotransfer Functions in Soil Hydrology. Elsevier, 542 p.Search in Google Scholar

Pachepsky, Y., Schaap, M.G., 2004. Data mining and exploration techniques. In: Development of Pedotransfer Functions in Soil Hydrology. Elsevier, pp. 21–32.10.1016/S0166-2481(04)30002-4Search in Google Scholar

Pidgeon, J.D., 1972. The measurement and prediction of available water capacity of Ferralitic soils in Uganda. Jurnal of Soil Science, 23, 431–441.10.1111/j.1365-2389.1972.tb01674.xSearch in Google Scholar

Rayment, G.E., Higginson, F.R., 1992. Australian laboratory handbook of soil and water chemical methods. Australian soil and land survey handbook. Inkata Press, Melbourne.Search in Google Scholar

Richards, L.A., 1947. Pressure membrane apparatus, construction and use. Agric. Eng., 28, 451–454.Search in Google Scholar

Richards, L.A., Fireman, M., 1943. Pressure-plate apparatus for measuring moisture sorption and transmission by soils. Soil Science, 56, 6, 395–404.10.1097/00010694-194312000-00001Search in Google Scholar

Suhardjo, H., Soepraptohardjo, M., 1981. Indonesian soil units and sub units for survey and mapping of transmigration areas. Bogor, Balai penelitian tanah, Departemen Pertanian Republik Indonesia (Soil Research Centre of the Ministry of Agriculture, Republic of Indonesia), 24 p.Search in Google Scholar

Sulaeman, Y., Minasny, B., McBratney, A.B., Sarwani, M., Sutandi, A., 2013. Harmonizing legacy soil data for digital soil mapping in Indonesia. Geoderma, 192, 1, 77–85.10.1016/j.geoderma.2012.08.005Search in Google Scholar

Tan, K.H., 2008. Soils in the humid tropics and monsoon region of Indonesia. CRC Press, 584 p.10.1201/9781420069105Search in Google Scholar

Tomasella, J., Hodnett, M.G., 1998. Estimating soil water retention characteristics from limited data in Brazilian Amazonia. Soil Science, 163, 190–202.10.1097/00010694-199803000-00003Search in Google Scholar

Tomasella, J., Hodnett, M., 2004. Pedotransfer functions for tropical soils. In: Development of Pedotransfer Functions in Soil Hydrology. Elsevier, pp. 415–429.10.1016/S0166-2481(04)30021-8Search in Google Scholar

Tomasella, J., Hodnett, M.G., Rossato, L., 2000. Pedotransfer functions for the estimation of soil water retention in Brazilian soils. Soil Science Society of America Journal, 64, 1, 327.10.2136/sssaj2000.641327xSearch in Google Scholar

Tranter, G., McBratney, A.B., Minasny, B., 2009. Using distance metrics to determine the appropriate domain of pedotransfer function predictions. Geoderma, 149, 3–4, 421–425.10.1016/j.geoderma.2009.01.006Search in Google Scholar

van Bemmelen, R.W., 1949. Geology of Indonesia. Vol. IA general geology. SDU, The Hague, 732 p.Search in Google Scholar

van den Berg, M., Klamt, E., van Reeuwijk, L.P., Sombroek, W.G., 1997. Pedotransfer functions for the estimation of moisture retention characteristics of Ferralsols and related soils. Geoderma, 78, 3–4, 161–180.10.1016/S0016-7061(97)00045-1Search in Google Scholar

van Engelen, V.W.P., Ting-tiang, W., 1995. Global and national soils and terrain digital databases (SOTER) - Procedures manual: no. 74 (rev. 1), 122 p.Search in Google Scholar

van Genuchten, M.T., 1980. A closed-form equation for predicting the hydraulic onductivity of unsaturated soils. Soil Science Society of America Journal, 44, 5, 892–898.10.2136/sssaj1980.03615995004400050002xSearch in Google Scholar

van Genuchten, M.T., Leij, F.J., Yates, S.R., 1991. The RETC code for quantifying the hydraulic functions of unsaturated soils, version 1.0. Riverside, 93 p.Search in Google Scholar

Vernimmen, R., BMKG, 2013. Joint cooperation programme component D1: droughts early warning system. 36 p.Search in Google Scholar

Wösten, J.H.M., Pachepsky, Y.A., Rawls, W.J., 2001. Pedotransfer functions: bridging the gap between available basic soil data and missing soil hydraulic characteristics. Journal of Hydrology, 251, 3–4, 123–150.10.1016/S0022-1694(01)00464-4Search in Google Scholar

Wösten, J.H.M., Verzandvoort, S.J.E., Leenaars, J.G.B., Hoogland, T., Wesseling, J.G., 2013. Soil hydraulic information for river basin studies in semi-arid regions. Geoderma, 195–196, 79–86.10.1016/j.geoderma.2012.11.021Search in Google Scholar

eISSN:
0042-790X
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Technik, Einführungen und Gesamtdarstellungen, andere