Uneingeschränkter Zugang

Linking surface and subsurface properties of biocrusted and non-biocrusted habitats of fine-grained fluvial sediments (playas) from the Negev Desert


Zitieren

Amit, R., Zilberman, E., Porat, N., 1999. Relief inversion in the Avrona playa as evidence of large-magnitude historical earthquakes, southern Arava Valley, Dead Sea Rift. Quaternary Res., 52, 76–91.10.1006/qres.1999.2050Search in Google Scholar

Beraldi-Campesi, H., Garcia-Pichel, F., 2011. The biogenicity of modern terrestrial roll-up structures and its significance for ancient life on land. Geobiology, 9, 10–23.10.1111/j.1472-4669.2010.00258.xSearch in Google Scholar

Blackburn, W.H., 1975. Factors influencing infiltration and sediment production of semiarid range lands in Nevada. Water Resour. Res., 11, 929–937.10.1029/WR011i006p00929Search in Google Scholar

Blume, H.P., Yair, A., Yaalon, D.H., Berkowicz, S.M., 1995. An initial study of pedogenic features along a transect across longitudinal dunes and interdune areas Nizzana region, Negev, Israel. Adv. Geoecol., 29, 51–64.Search in Google Scholar

Blume, H.P., Beyer, L., Pfisterer, U., Felix-Henningsen, P., 2008. Soil characteristics and pattern of the Nizzana research site. In: Breckle, S.W., Yair, A., Veste, M. (Eds.): Arid Dune Ecosystems: The Nizzana sands in the Negev Desert. Springer-Verlag, Berlin Heidelberg, pp. 65–77.10.1007/978-3-540-75498-5_5Search in Google Scholar

Bowler, J.M., Huang, Q., Chen, K., Head, M.J., Yuan, B., 1986. Radiocarbon dating of playa-lake hydrologic changes: Examples from northwestern China and central Australia. Palaeogeog, Palaeoclim, Palaeoecol., 54, 241–260.10.1016/0031-0182(86)90127-6Search in Google Scholar

Briere, P.R., 2000. Playa, playa lake, sabkha: Proposed definitions for old terms. J. Arid Environ., 45, 1–45.10.1006/jare.2000.0633Search in Google Scholar

Brock, T.D., 1975. Effect of water potential on a Microcoleous (Cyanophyceae) from a desert crust. J. Phycol., 11, 316–320.10.1111/j.0022-3646.1975.00316.xSearch in Google Scholar

Bűdel, B., 2005. Microorganisms of biological crusts on soil surfaces. In: Buscot, F., Varma, A. (Eds.): Microorganisms in Soils: Roles in the Genesis and Functions. Springer Verlag, Berlin Heidelberg, pp. 307–321.10.1007/3-540-26609-7_15Search in Google Scholar

Campbell, S.E., 1979. Soil stabilization by prokaryotic desert crusts: implications for Precambrian land biota. Orig. Life, 9, 335–348.10.1007/BF00926826116183Search in Google Scholar

Cerdá, A., 1997. Soil erosion after land abandonment in a semi-arid environment of southeastern Spain. Arid Soil Res. Rehab., 11, 168–176.10.1080/15324989709381469Search in Google Scholar

Elbert, W., Weber, B., Burrows, S., Steinkamp, J., Büdel, B., Andrea, M.O., Pöschl, U., 2012. Contribution of cryptogamic covers to the global cycles of carbon and nitrogen. Nature Geosci., 5, 459–462.10.1038/ngeo1486Search in Google Scholar

Evenari, M., 1981. Ecology of the Negev Desert, a critical review of our knowledge. In: Shuval, H. (Ed.): Developments in Arid Zone Ecology and Environmental Quality. Balaban ISS, Philadelphia, Pa, pp. 1–33.Search in Google Scholar

Famiglietti, J.S., Devereaux, J.A., Laymon, C.A., Tsegaye, T., Houser, P.R., Jackson, T.J., Graham, S.T., Rodell, M., van Oevelen, P.J., 1999. Ground-based investigation of soil moisture variability within remote sensing footprints during the Southern Great Plains 1997 (SGP97) Hydrology Experiment. Water Resour. Res., 35, 1839–1851.10.1029/1999WR900047Search in Google Scholar

Fischer, T., Gypser, S., Subotina, M., Veste, M., 2014. Synergic hydraulic and nutritional feedback mechanisms control surface patchiness of biological soil crusts on tertiary sands at a post-mining site. J. Hydrol. Hydromech., 62, 293–302.10.2478/johh-2014-0038Search in Google Scholar

Garcia-Pichel, F., Pringault, O., 2001. Cyanobacteria track water in desert soils. Nature, 413, 380–381.10.1038/35096640Search in Google Scholar

Grishkan, I., Kidron, G.J., 2015. Vertical divergence of microfungal communities through the depth in different soil formations at Nahal Nizzana, western Negev Desert, Israel. Geomicrobiol. J., doi. 10.1080/01490451.2015.1062063.10.1080/01490451.2015.1062063Search in Google Scholar

Hamdi-Aissa, B., Valles, V., Aventurier, A., Ribolzi, O., 2004. Soils and brine geochemistry and mineralogy of hyperarid desert playa, Ouargla Basin, Algerian Sahara. Arid Land Res. Manage., 18, 103–126.10.1080/1532480490279656Search in Google Scholar

Handford, C.R., 1982. Sedimentology and evaporate genesis in a Holocene continental-sabkha playa basin – Bristol Dry Lake, California. Sedimentology, 29, 239–253.10.1111/j.1365-3091.1982.tb01721.xSearch in Google Scholar

Hillel, D., Tadmor, N., 1962. Water regime and vegetation in central Negev Highlands of Israel. Ecology, 43, 33–41.10.2307/1932037Search in Google Scholar

Johnson, S.H., Neuer, S., Garcia-Pichel, F., 2007. Export of nitrogenous compounds due to incomplete cycling within biological soil crusts of arid lands. Environ. Microbiol., 9, 680–689.10.1111/j.1462-2920.2006.01187.xSearch in Google Scholar

Kidron, G.J., 1999. Differential water distribution over dune slopes as affected by slope position and microbiotic crust, Negev Desert, Israel. Hydrol. Process., 13, 1665–1682.10.1002/(SICI)1099-1085(19990815)13:11<1665::AID-HYP836>3.0.CO;2-RSearch in Google Scholar

Kidron, G.J., 2001. Runoff-induced sediment yield from dune slopes in the Negev Desert, 2: Texture, carbonate and organic matter. Earth Surf. Process. Landf., 26, 583–599.10.1002/esp.194Search in Google Scholar

Kidron, G.J., 2007. Millimeter-scale microrelief affecting runoff yield over microbiotic crust in the Negev Desert. Catena, 70, 266–273.10.1016/j.catena.2006.08.010Search in Google Scholar

Kidron, G.J., 2009. The effect of shrub canopy upon surface temperatures and evaporation in the Negev Desert. Earth Surf. Process. Landf., 34, 123–132.10.1002/esp.1706Search in Google Scholar

Kidron, G.J., 2010. Under-canopy microclimate within sand dunes in the Negev Desert. J. Hydrol., 392, 201–210.10.1016/j.jhydrol.2010.08.011Search in Google Scholar

Kidron, G.J., 2014a. Sink plot for runoff measurements on semi-flat terrains: Preliminary data and their potential hydrological and ecological implications. J. Hydrol. Hydromech., 62, 303–308.10.2478/johh-2014-0032Search in Google Scholar

Kidron, G.J., 2014b. Do mosses serve as sink for rain in the Negev Desert? A theoretical and experimental Approach. Catena, 121, 31–39.10.1016/j.catena.2014.05.001Search in Google Scholar

Kidron, G.J., 2015. Dune crests serve as preferential habitats for perennial plants during frequent drought years. J. Hydrol., 522, 295–304.10.1016/j.jhydrol.2014.12.059Search in Google Scholar

Kidron, G.J., Benenson, I., 2014. Biocrusts serve as biomarkers for the upper 30 cm soil water content. J. Hydrol., 509, 398–405.10.1016/j.jhydrol.2013.11.041Search in Google Scholar

Kidron, G.J., Gutschick, V., 2013. Soil moisture correlates with shrub-grass association in the Chihuahuan Desert. Catena, 107, 71–79.10.1016/j.catena.2013.02.001Search in Google Scholar

Kidron, G.J., Vonshak, A., 2012. The use of microbiotic crusts as biomarkers for ponding, subsurface flow and soil moisture content and duration. Geoderma, 181–182, 56–64.10.1016/j.geoderma.2012.02.026Search in Google Scholar

Kidron, G.J., Vonshak, A., Abeliovich, A., 2009. Microbiotic crusts as biomarkers for surface stability and wetness duration in the Negev Desert. Earth Surf. Process. Landf., 34, 1594–1604.10.1002/esp.1843Search in Google Scholar

Kidron, G.J., Barinova, S., Vonshak, A., 2012a. The effects of heavy winter rains and rare summer rains on biological soil crusts in the Negev Desert. Catena, 95, 6–11.10.1016/j.catena.2012.02.021Search in Google Scholar

Kidron, G.J., Jones, T.L., Monger, H.C., Starinsky, A., 2002. Factors controlling microbiotic crusts: Negev and the Chihuahuan Desert. Semi Annual Report presented for IALC. May 2002.Search in Google Scholar

Kidron, G.J., Monger, H.C., Vonshak, A., Conrod, W., 2012b. Contrasting effects of microbiotic crusts on runoff in desert surfaces. Geomorphology, 139–140, 484–494.10.1016/j.geomorph.2011.11.013Search in Google Scholar

Kidron, G.J., Li, X.R., Jia, R.L., Gao, Y.H., Zhang, P., 2015a. Assessment of carbon gains from biocrusts inhabiting a dunefield in the Negev Desert. Geoderma, 253–254, 102–110.10.1016/j.geoderma.2015.04.015Search in Google Scholar

Kidron, G.J., Posmanik, R., Brunner, T., Nejidat, A.,2015b. Spatial abundance of microbial nitrogen-transforming genes and inorganic nitrogen in biocrusts along a transect of an arid sand dune in the Negev Desert. Soil Biol. Biochem., 83, 150–159.10.1016/j.soilbio.2015.01.024Search in Google Scholar

Lange, O.L., Kidron, G.J., Büdel, B., Meyer, A., Kilian, E., Abeliovitch, A., 1992. Taxonomic composition and photosynthetic characteristics of the biological soil crusts covering sand dunes in the Western Negev Desert. Funct. Ecol., 6, 519–527.10.2307/2390048Search in Google Scholar

Lee, J.A., Gill, T.E., Mulligan, K.R., Dominguez Acosta, M., Perez, A.E., 2009. Land use/land cover and point sources of the 15 December 2003 dust storm in southwestern North America. Geomorphology, 105, 18–27.10.1016/j.geomorph.2007.12.016Search in Google Scholar

Leib, B.G., Jabro, J.D., Matthews, G.R., 2003. Field evaluation and performance comparison of soil moisture sensors. Soil Sci., 168, 396–408.10.1097/01.ss.0000075285.87447.86Search in Google Scholar

Lichner, L., Orfánus, T., Nováková, K., Šír, M., Tesař, M., 2007. The impact of vegetation on hydraulic conductivity of sandy soil. Soil Water Res., 2, 59–66.10.17221/2115-SWRSearch in Google Scholar

Magee, J.W., Bowler, J.M., Miller, G.H., Williams, D.L.G., 1995. Stratigraphy, sedimentology, chronology and palaeohydrology of Quaternary lacustrine deposits at Madigan Gulf, Lake Eyre, South Australia. Palaeogeog. Palaeoclim. Palaeoecol., 113, 3–42.10.1016/0031-0182(95)00060-YSearch in Google Scholar

Malek, E., 2003. Microclimate of a desert playa: evaluation of annual radiation, energy, and water budget components. Int. J. Climatol., 23, 333–345.10.1002/joc.873Search in Google Scholar

Mayland, H.F., McIntosh, T.H., 1966. Availability of biologically fixed nitrogen-15 to higher plants. Nature, 209, 421–422.10.1038/209421a0Search in Google Scholar

Pachur, H.J., Wünnemann, B., 1995. Lake evolution in the Tengger Desert, northwestern China, during the last 40,000 years. Quarter. Res., 44, 171–180.10.1006/qres.1995.1061Search in Google Scholar

Pen-Mouratov, S., Hu, C., Hindin, E., Steinberger, Y., 2011. Soil microbial activity and a free-living nematode community in the playa and in the sandy biological crust of the Negev Desert. Biol. Fertil. Soils, 47, 363–375.10.1007/s00374-011-0540-xSearch in Google Scholar

Reynolds, R.L., Yount, J.C., Reheis, M., Goldstein, H., Chavez, Jr P., Fulton, R., Whitney, J., Fuller, C., Forester, R.M., 2007. Dust emission from wet and dry playas in the Mojave Desert, USA. Earth Surf. Process. Landf., 32, 1811–1827.10.1002/esp.1515Search in Google Scholar

Rosenan, N., Gilad, M., 1985. Atlas of Israel. Meteorological data, Carta, Jerusalem.Search in Google Scholar

Roskin, J., Porat, N., Tsoar, H., Blumberg, D., Zander, A.M., 2011. Age, origin and climatic controls on vegetated linear dunes in the northwestern Negev Desert (Israel). Quarter. Sci. Rev., 30, 1649–1674.10.1016/j.quascirev.2011.03.010Search in Google Scholar

Sanchez, C., Wood, M.K., 1987. The relationship of soil surface roughness with hydrologic variables on natural and reclaimed rangeland in New Mexico. J. Hydrol., 94, 345–354.10.1016/0022-1694(87)90060-6Search in Google Scholar

Schild, R., Wendorf, F., 2001. Geoarchaeology of the Holocene Climatic Optimum at Nabta Playa, Southwestern Desert, Egypt. Geoarchaeology, 16, 7–28.10.1002/1520-6548(200101)16:1<7::AID-GEA3>3.0.CO;2-JSearch in Google Scholar

Strauss, S.L., Day, T.A., Garcia-Pichel, F., 2012. Nitrogen cycling in desert biological soil crusts across biogeographic regions in the Southwestern United States. Biogeochemistry, 108, 171–182.10.1007/s10533-011-9587-xSearch in Google Scholar

Sweeney, M.R., McDonald, E.V., Etyemezian, V., 2011. Quantifying dust emissions from desert landforms, eastern Mojave Desert, USA. Geomorphology, 135, 21–34.10.1016/j.geomorph.2011.07.022Search in Google Scholar

Vengosh, A., Chivas, A.R., Starinsky, A., Kolodny, Y., Zhang, B., Zhang, P., 1995. Chemical and boron isotope compositions of non-marine brines from the Qaidam Basin, Qinghai, China. Chem. Geol., 120, 135–154.10.1016/0009-2541(94)00118-RSearch in Google Scholar

Ward, J.D., 1988. Eolian, fluvial and pan (playa) facies of the Tertiary Tsondab Sandstone Formation in the central Namib Desert, Namibia. Sedimen. Geol., 55, 143–162.10.1016/0037-0738(88)90094-2Search in Google Scholar

Weltzin, J.E., Bridgham, S.D., Pastor, J., Chen, J., Harth, C., 2003. Potential effect of warming and drying on peatland plant community composition. Global Change Biol., 9, 141–151.10.1046/j.1365-2486.2003.00571.xSearch in Google Scholar

Wetzel, R.G., Westlake, D.F., 1969. Periphyton. In: Vollenweider, R.A. (Ed.): A Manual on Methods for Measuring Primary Production in Aquatic Environments. Blackwell Scientific, Oxford (UK), pp. 33–40.Search in Google Scholar

Wondzell, S.M., Cornelius, J.M., Cunningham, G.L, 1990. Vegetation patterns, microtopography, and soils on a Chihuahuan desert playa. J. Veg. Sci., 1, 403–440.10.2307/3235717Search in Google Scholar

Yang, H., Wu, M., Liu, W., Zhang, Z., Zhang, N., Wan, S., 2011. Community structure and composition in response to climate change in a temperate steppe. Global Change Biol., 17, 452–465.10.1111/j.1365-2486.2010.02253.xSearch in Google Scholar

Yoder, R.E., Johnson, D.L., Wilkerson, J.B., Yoder, D.C., 1998. Soil water sensor performance. Appl. Eng. Agric. 14, 121–133.10.13031/2013.19373Search in Google Scholar

Yu, J., Grishkan, I., Sherman, C., Steinberger, Y., 2012. Spatiotemporal variability of cultivable microfungal communities inhabiting a playa area in the western Negev Desert, Israel. J. Arid Environ., 81, 9–17.10.1016/j.jaridenv.2012.01.005Search in Google Scholar

eISSN:
0042-790X
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Technik, Einführungen und Gesamtdarstellungen, andere