Uneingeschränkter Zugang

Dissolved oxygen and water temperature dynamics in lowland rivers over various timescales


Zitieren

Banaszuk, H., 1996. Paleogeography. Natural and anthropogenic transformation of the upper Narew Valley. Ekonomia i Środowisko, ISBN 83-85792-30-9. (In Polish.)Search in Google Scholar

Banaszuk, P., Wysocka-Czubaszek, A., 2005. Phosphorus dynamics and fluxes in a lowland river: The Narew Anastomosing River System, NE Poland. Ecol. Eng., 25, 4, 429–441.10.1016/j.ecoleng.2005.06.013Search in Google Scholar

Bayley, P.B., 1991. The flood pulse advantage and the restoration of river-flood-plain systems. Regul. Rivers: Res. & Manage., 6, 75–86.10.1002/rrr.3450060203Search in Google Scholar

Brown, J.H., Gillooly, J.F., Allen, A.P., Savage, V.M., West, G.B., 2004. Towards a metabolic theory of ecology. Ecology, 85, 7, 1771–1789.10.1890/03-9000Search in Google Scholar

Carpenter, S.R., 2003. Regime shifts in lake ecosystems: pattern and variation. In: Excellence in ecology series, 15, Ecology Institute, Oldendorf/Luhe.Search in Google Scholar

Committee on Sanitary Engineering Research, 1960. Solubility of atmospheric oxygen in water. J. Sani. Eng. Div., SE7, 86, 41.10.1061/JSEDAI.0000293Search in Google Scholar

Delworth, T., Manabe, S., 1993. Climate variability and land-surface processes. Adv. Water Resour., 16, 3–20.10.1016/0309-1708(93)90026-CSearch in Google Scholar

Demars, B.O.L., Harper, D.M., 1998. The aquatic macrophytes of an English lowland river system: assessing response to nutrient enrichment. Hydrobiologia, 384, 75–88.10.1023/A:1003203512565Search in Google Scholar

Demars, B.O.L., Harper, D.M., 2005. Distribution of aquatic vascular plants in lowland rivers: separating the effects of local environmental conditions, longitudinal connectivity and river basin isolation. Freshwater Biol., 50, 418–437.10.1111/j.1365-2427.2004.01329.xSearch in Google Scholar

Demars, B.O.L., Manson, J.R., Olafsson, J.S., Gislason, G.M., Gudmundsdottir, R., Woodward, G., Reiss, J., Pichler, D., Rasmussen, J.J., Friberg, N., 2011. Temperature and the metabolic balance of streams. Freshwater Biol., 56, 1106–1121.10.1111/j.1365-2427.2010.02554.xSearch in Google Scholar

Desmet, N.J.S., Van Belleghem, S., Seuntjens, P., Bouma, T.J., Buis, K., Meire, P., 2011. Quantification of the impact of macrophytes on oxygen dynamics and nitrogen retention in a vegetated lowland river. Phys. Chem. Earth, 36, 12, 479–489.10.1016/j.pce.2008.06.002Search in Google Scholar

Facchini, A., Mocenni, C., Marwan, N., Vicino, A., Tiezzi, E., 2007. Nonlinear time series analysis of Dissolved oxygen in the Orbetello Lagoon (Italy). Ecol. Model., 203, 339–348.10.1016/j.ecolmodel.2006.12.001Search in Google Scholar

Feng, X., Kirchner, J.W., Neal, C., 2004. Spectral analysis of chemical time series from long-term catchment monitoring studies: hydrochemical insights and data requirements. Water Air Soil Pollut., 4, 221–235.10.1007/978-94-007-0952-2_16Search in Google Scholar

Flinn, M.B., Adams, S.R., Whiles, M.R., Garvey, J.E., 2008. Biological responses to contrasting hydrology in backwaters of Upper Mississippi River navigation pool 25. Environ. Manage., 41, 468–486.10.1007/s00267-008-9078-6Search in Google Scholar

Frieder, C.A., Nam, S.H., Martz, T.R., Levin, L.A., 2012. High temporal and spatial variability of dissolved oxygen and pH in a nearshore California kelp forest. Biogeosciences, 9, 3917–3930.10.5194/bg-9-3917-2012Search in Google Scholar

Genkai-Kato, M., 2006. Regime shifts: catastrophic responses of ecosystems to human impacts. Ecol. Res., 22, 214–219.10.1007/s11284-006-0304-5Search in Google Scholar

Gnauck, A., Li, B.L., Fuego, J.D.A., Luther, B., 2010. The role of statistics for long-term ecological research. In: Muller, F., Baessler, C., Schubert, H., Klotz, S. (Eds.): Long-Term Ecological Research. Between Theory and Application, Springer-Verlag, Berlin, pp. 107–129, ISBN 978-90-481-8781-2, DOI 10.1007/978-90-481-8782-9.10.1007/978-90-481-8782-9_8Search in Google Scholar

Goodwin, K., Caraco, N., Cole, J., 2008. Temporal dynamics of dissolved oxygen in a floating-leaved macrophyte bed. Freshwater Biol., 53, 1632–1641.10.1111/j.1365-2427.2008.01983.xSearch in Google Scholar

Górniak, A., Jekatierynczuk-Rudczyk, E., 1998. Water quality in the Siemianówka Reservoir (NE Poland). Int. Rev. Hydrobiol., 83, 311–318.Search in Google Scholar

Gradziński, R., Baryła, J., Danowski, W., Doktor, M., Gmur, D., Gradziński, M., Kędzior, A., Paszkowski, M., Soja, R., Zieliński, T., Żurek, S., 2000. Anastomosing system of the Upper Narew River, NE Poland. Ann. Soc. Geol. Pol., 70, 219–229.Search in Google Scholar

Gradziński, R., Baryła, J., Doktor, M., Gmur, D., Gradziński, M., Kędzior, A., Paszkowski, M., Soja, R., Zieliński, T., Żurek, S., 2003. Vegetation-controlled modern anastomosing system of the Upper Narew River (NE Poland) and its sediments. Sediment. Geol., 157, 253–276.10.1016/S0037-0738(02)00236-1Search in Google Scholar

Halley, J.M., 1996. Ecology, evolution and 1 f –noise. Trends Ecol. Evol., 11, 1, 33–37.10.1016/0169-5347(96)81067-6Search in Google Scholar

Halliday, S.J., Wade, A.J., Skeffington, R.A., Neal, C., Reynolds, B., Rowland, P., Neal, M., Norris, D., 2012. An analysis of long term trends, seasonality and short-term dynamics in water quality data from Plynlimon, Wales. Sci. Total Environ., 434, 186–200.10.1016/j.scitotenv.2011.10.05222119034Search in Google Scholar

Herschy, R.W., 2009. Streamflow Measurement. 3rd Edn. Taylor & Francis, London and New York.10.1201/9781482265880Search in Google Scholar

Hidayat, H., Vermeulen, B., Sassi, M.G., Torfs, P.J.J.F., Hoitink, A.J.F., 2011. Discharge estimation in a backwater affected meandering river. Hydrol. Earth Syst. Sci., 15, 2717–2728.10.5194/hess-15-2717-2011Search in Google Scholar

Hocke, K., Kämpfer, N., 2009. Gap filling and noise reduction of unevenly sampled data by means of the Lomb-Scargle periodogram. Atmos. Chem. Phys., 9, 4197–4206.10.5194/acp-9-4197-2009Search in Google Scholar

Huang, Y., Schmitt, F.G., 2014. Time dependent intrinsic correlation analysis of temperature and dissolved oxygen time series using empirical mode decomposition. J. Mar. Sci., 130, 90–100.10.1016/j.jmarsys.2013.06.007Search in Google Scholar

Institute of Meteorology and Water Management (IMGW), 1983. Map of Hydrological Division of Poland. Wydawnictwo Komunikacji i Łączności, Warsaw. (In Polish.)Search in Google Scholar

Junk, W.J., Bayley, P.B., Sparks, R.E., 1989. The flood pulse concept in river-floodplain systems. Canadian Special Publication of Fisheries and Aquatic Sciences, 106, 110–127.Search in Google Scholar

Kirchner, J.W., Feng, X., Neal, C., 2000. Fractal stream chemistry and its implications for the contaminant transport in catchments. Nature, 403, 524–527.10.1038/35000537Search in Google Scholar

Kirchner, J.W., Feng, X., Neal, C., 2001. Catchment-scale advection and dispersion as a mechanism for fractal scaling in stream tracer concentrations. J. Hydrol., 254, 82–101.10.1016/S0022-1694(01)00487-5Search in Google Scholar

Kirchner, J.W., 2005. Aliasing in 1/fα noise spectra: Origins, consequences, and remedies. Phys. Rev., 71, 066110.10.1103/PhysRevE.71.06611016089823Search in Google Scholar

Kirchner, J.W., Neal, C., 2013. Universal fractal scaling in stream chemistry and its implications for solute transport and water quality trend detection. PNAS, 110, 30, 12213–12218.10.1073/pnas.1304328110372510223842090Search in Google Scholar

Kolmogorov, A.N., 1941. Local structure of turbulence in an incompressible liquid for very large Reynolds numbers. C.R. Acad. Sci. USSR, 30, 301–305.Search in Google Scholar

Lettenmaier, R.P, Hooper, E.R., Wagoner, C., Fans, K.B., 1991. Trends in stream quality in continental United States, 1978–1987. Water Resour. Res., 27, 327–339.10.1029/90WR02140Search in Google Scholar

Mandelbrot, B.B., 1967. How long is the coast of Britain? Statistical self-similarity and the fractional dimension. Science, 156, 636–638.10.1126/science.156.3775.63617837158Search in Google Scholar

Marion, A., Nikora, V., Puijalon, S., Bouma, T., Koll, K., Ballio, F., Tait, S., Zaramella, M., Sukhodolov, A., O’Hare, M., Wharton, G., Aberle, J., Tregnaghi, M., Davies, P., Nepf, H., Parker, G., Statzner, B., 2014. Aquatic interfaces: a hydrodynamic and ecological perspective. J. Hydraul. Res., 52, 6, 744–758.10.1080/00221686.2014.968887Search in Google Scholar

Matsoukas, C., Islam, S., 2000. Detrended fluctuation analysis of rainfall and streamflow. J. Geophys. Res., 105, D23, 29165–29172.10.1029/2000JD900419Search in Google Scholar

Moog, D.B., Whiting, P.J., 1998. Annual hysteresis in bed load rating curves. Water Resour. Res., 34, 9, 2393–2399.10.1029/98WR01658Search in Google Scholar

Mrokowska, M.M., Rowiński, P.M., Kalinowska, M., 2014. Notes on the estimation of resistance to flow during flood wave propagation. Hydrol. Earth Syst. Sc. Discus., 11, 13311–13352.10.5194/hessd-11-13311-2014Search in Google Scholar

Neal, C., Reynolds, B., Rowland, P., Norris, D., Kirchner, J.W., Neal, M., Sleep, D., Lawlor, A., Woods, C., Thacker, S., Guyatt, H., Vincent, C., Hockenhull, K., Wickham, H., Harman, S., Amstrong, L., 2013. High frequency water quality time series in precipitation and streamflow: from fragmentary signals to scientific challenge. Sci. Total Environ., 434, 3–12.10.1016/j.scitotenv.2011.10.07222245159Search in Google Scholar

O’Connor, B.L., Judson, W.H., McPhillips, L.E., 2012. Thresholds of flow-induced bed disturbances and their effect on stream metabolism in an agricultural river. Water Resour. Res., 48, 8, W08504.10.1029/2011WR011488Search in Google Scholar

O’Kane, J.P., 2005. Hysteresis in hydrology. Acta Geophys. Pol., 53, 4, 373–283.Search in Google Scholar

Pena, M.A., Katsev, S., Oguz, T., Gilbert, D., 2010. Modeling dissolved oxygen dynamics and hypoxia. Biogeosciences, 7, 933–957.10.5194/bg-7-933-2010Search in Google Scholar

Petersen-Overleir, A., 2006. Modelling stage-discharge relationships affected by hysteresis using the Jones formula and nonlinear regression. Hydrolog. Sci. J., 51, 365–388.10.1623/hysj.51.3.365Search in Google Scholar

Poff, N.L., Ward, J.V., 1989. Implications of streamflow variability and predictability for lotic community structure: a regional analysis of streamflow patterns. Can. J. Fish. Aquat. Sci., 46, 1805–1818.10.1139/f89-228Search in Google Scholar

Poff, N.L., Allan, J.D., Bain, M.B., Karr, J.R., Prestegaard, K.L., Richter, B.D., Sparks, R.E., Stromberg, J.C., 1997. The natural flow regime: a paradigm for conservation and restoration of river ecosystems. BioScience, 47, 769–784.10.2307/1313099Search in Google Scholar

Rajwa, A., Rowiński, P.M., Bialik, R.J., Karpiński, M., 2014. Stream diurnal profiles of dissolved oxygen – case studies In: Proc. 3rd IAHR Europe Congress, Porto, Portugal, ISBN 978-989-96479-2-3.Search in Google Scholar

Rowiński, P.M., Czernuszenko, W., Pretre, J.M., 2000. Time-dependent shear velocities in channel routing. Hydrolog. Sci. J., 45, 6, 881–895.10.1080/02626660009492390Search in Google Scholar

Scheffer, M., 2001. Catastrophic shifts in ecosystems. Nature, 413, 591–596.10.1038/35098000Search in Google Scholar

Schmitt, F., Dur, G., Soussi, S., Brizard, Zongo, S., 2008. Statistical properties of turbidity, oxygen and pH fluctuations in the Seine river estuary (France). Phys. A, 387, 6613–6623.10.1016/j.physa.2008.08.026Search in Google Scholar

Skorbiłowicz, M., 2010. Concentrations of macroelements, zink and iron in water of the Upper Narew Basin, NE Poland. Polish J. Environ. Stud., 19, 2, 397–405.Search in Google Scholar

Turcotte, D.L., 1997. Fractals and Chaos in Geology and Geophysics. 2nd ed. Cambridge Univ. Press, Cambridge.10.1017/CBO9781139174695Search in Google Scholar

Wade, A.J., Palmer-Felgate, E.J., Halliday, S.J., Skeffington, R.A., Loewenthal, M., Jarvie, H.P., Bowes, M.J., Greenway, G.M., Haswell, S.J., Bell, I.M., Joly, E., Fallatah, A., Neal, C., Williams, R.J., Gozzard, E., Newman, J.R., 2012. Hydrochemical processes in lowland rivers: insights from in situ, high-resolution monitoring. Hydrol. Earth Syst. Sci., 16, 4323–4342.10.5194/hess-16-4323-2012Search in Google Scholar

Wallis, S., 2005. Experimental study of travel times in a small stream. In: Czernuszenko, W., Rowiński, P. (Eds.): Water Quality Hazards and Dispersion of Pollutants, Springer, USA, pp. 109–120.10.1007/0-387-23322-9_6Search in Google Scholar

Walling, D.E., Webb, B.W., 1986. Solutes in river systems. In: Trudgill, S.T. (Ed.): Solute Processes. John Wiley, New York, pp. 251–327.Search in Google Scholar

Williams, G.P., 1989. Sediment concentration versus water discharge during single hydrologic events in rivers. J. Hydrol., 111, 89–106.10.1016/0022-1694(89)90254-0Search in Google Scholar

Witt, A., Malamud, B.D., 2013. Quantification of long-range persistence in geophysical time series: conventional and benchmark-based improvement techniques. Surv. Geophys., 34, 541–651.10.1007/s10712-012-9217-8Search in Google Scholar

Whitfield, P.H., McNaughton, B., 1986. Dissolved-oxygen depression under ice cover in two Yukon rivers. Water Resour. Res., 22, 12, 1675–1679.10.1029/WR022i012p01675Search in Google Scholar

Yu, Z., 2006. Power laws governing hydrology and carbon dynamics in northern peatlands. Global Planet. Change, 53, 169–175.10.1016/j.gloplacha.2006.03.013Search in Google Scholar

Zieliński, P., Górniak, A., Suchowolec, T., 2003. Changes in water chemistry along the course of two rivers with different hydrological regimes. Pol. J. Environ. Stud., 12, 1, 111–117.Search in Google Scholar

eISSN:
0042-790X
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Technik, Einführungen und Gesamtdarstellungen, andere