Uneingeschränkter Zugang

Bacteria transport and retention in intact calcareous soil columns under saturated flow conditions


Zitieren

Bradford, S.A., Bettahar, M., Šimůnek, J., van Genuchten, M.Th., 2004. Straining and attachment of colloids in physically heterogeneous porous media. Vadose Zone J., 3, 384-394.10.2136/vzj2004.0384Search in Google Scholar

Cey, E.E., Rudolph, D.L., Passmore, J., 2009. Influence of macroporosity on preferential solute and colloid transport in unsaturated field soils. J. Contam. Hydrol., 107, 1-2, 45-57.10.1016/j.jconhyd.2009.03.00419435645Search in Google Scholar

Darnault, C.J.G., Steenhuis, T.S., Garnier, P., Kim, Y.J., Jenkins, M.B., Ghiorse, W.C., Baveye, P.C., Parlange, J.Y., 2004. Preferential flow and transport of Cryptosporidium parvum oocysts through the vadose zone: Experiments and modeling. Vadose Zone J., 3, 262-270.10.2136/vzj2004.2620Search in Google Scholar

Drouinean, G., 1942. Dosage rapide du calcarire actif du sol:nouvellesdonnees sur la separation et la nature des fractionscalcaires. [Rapid determination of soil active limestone: New data on separation and nature of the limestone fractions]. Ann. Agron., 12, 441-450. (In French.) Search in Google Scholar

Flynn, R., Hunkeler, D., Guerin, C., Burn, C., Rossi, P., Aragno, M., 2004. Geochemical influences on H40/1 bacteriophage inactivation in glaciofluvial sands. Environ. Geol., 45, 504-517.10.1007/s00254-003-0905-zSearch in Google Scholar

Foppen, J.W.A., Schijven, J.F., 2005. Transport of E. coli in columns of geochemically heterogeneous sediment. Water Resour., 39, 3082-3088.10.1016/j.watres.2005.05.02315996706Search in Google Scholar

Foppen, J.W.A., Schijven, J.F., 2006. Evaluation of data from the literature on the transport and survival of Escherichia coli and thermotolerant coliforms in aquifers under saturated conditions.Water Res., 40, 401-426.10.1016/j.watres.2005.11.01816434075Search in Google Scholar

Foppen, J.W., Herwerden, M.V., Schijven, J., 2007. Measuring and modelling straining of Escherichia coli in saturated porous media. J. Contam. Hydrol., 93, 1-4, 236-254.10.1016/j.jconhyd.2007.03.00117466406Search in Google Scholar

Foppen, J.W.A., Lutterodt, G., Röling, W.F.M., Uhlenbrook, S., 2010.Towards understanding inter-strain attachment variations of Escherichia coli during transport in saturated quartz sand. Water Res., 44, 1202-1212.10.1016/j.watres.2009.08.03419765793Search in Google Scholar

Foster, S.S.D., 2000. Groundwater resources at the turn of the millennium: taking stock and looking forward. In: Sillo et al. (Eds.): Groundwater: Past Achievements and Future Challenges. Balkema, Rotterdam, The Netherlands, pp. 27-33.Search in Google Scholar

Gargiulo, G., Bradford, S.A., Simunek, J., Ustohal, P., Vereecken, H.,Klumpp, E., 2008. Bacteria Transport and Deposition under Unsaturated Flow Conditions: The Role of Water Content and Bacteria Surface Hydrophobicity. Vadose Zone J., 7, 2, 406-419.10.2136/vzj2007.0068Search in Google Scholar

Gilbert, R.G., Gerba, C.P., Rice, R.C., Bouwer, H., Wallis, C., Melnick, J.L., 1976. Appl. Environ. Microbiol., 32, 3, 333-338.10.1128/aem.32.3.333-338.1976170066825040Search in Google Scholar

Gould, W.D., Hagedorn, C., Bradinelli, T.R., Zablotwicz, R.M., 1985. New selective media for enumeration and recovery of fluorescent Pseudomonads from various habitats. Appl. Environ. Microbiol., 49, 1, 28-32.10.1128/aem.49.1.28-32.1985Search in Google Scholar

Guber, A.K., Shelton, D.R., Pachepsky, Y.A., 2005. Transport and retention of manure borne coliforms in undisturbed soil columns.Vadose Zone J., 4, 828-837.10.2136/vzj2004.0097Search in Google Scholar

Hagedorn, C., Hansen, D.T., Simonson, G.H., 1978. Survival and movement of fecal indicator bacteria in soil under conditions of saturated flow. J. Environ. Qual., 7, 55-59.10.2134/jeq1978.00472425000700010011xSearch in Google Scholar

Hendry, M.J., Lawrence, J.R., Maloszewski, P., 1999. Effects of velocity on the transport of two bacteria through saturated sand. Ground Water, 37, 1, 103-112.10.1111/j.1745-6584.1999.tb00963.xSearch in Google Scholar

Jiang, S., Pang, L., Buchan, G.D., Simůnek, J., Noonan, M.J., Close, M.E., 2010. Modeling water flow and bacterial transport in undisturbed lysimeters under irrigations of dairy shed effluent and water using HYDRUS-1D. Water Res., 44, 4, 1050-1061.10.1016/j.watres.2009.08.039Search in Google Scholar

Johnson, W.P., Blue, K.A., Logan, B.E., Arnold, R.G., 1995. Modeling bacterial detachment during transport though porous media as a residence-time dependent process. Water Resour. Res., 31, 2649-2658.10.1029/95WR02311Search in Google Scholar

Kadam, A.M.,Oza, G.H., Nemade, P.D., Shankar, H.S., 2008. Pathogen removal from municipal wastewater in constructed soil filter.Ecol. Eng., 33, 1, 37-44.10.1016/j.ecoleng.2007.12.001Search in Google Scholar

Klauth, P., Wilhelm, R., Klumpp, E., Poschen, L., Groeneweg, J., 2004. Enumeration of soil bacteria with the green fluorescent nucleic acid dye Sytox green in the presence of soil particles. Journal Microbiol. Methods, 59, 189-198.10.1016/j.mimet.2004.07.004Search in Google Scholar

Levy, J., Sun, K., Findlay, R.H., Farruggia, F.T., Porter, J., Mumy, K.L., Tomaras, J., Tomaras, A., 2007. Transport of Escherichia coli bacteria through laboratory columns of glacial- outwash sediments: Estimating model parameter values based on sediment characteristics. J. Contam. Hydrol., 89, 71-106.10.1016/j.jconhyd.2006.08.006Search in Google Scholar

McCaulou, D.R., Bales, R.C., McCarthy, J.F., 1994. Use of short-pule experiments to study bacteria transport through porous media. J. Contam. Hydrol., 15, 1-14.10.1016/0169-7722(94)90007-8Search in Google Scholar

McCaulou, D., Bales, R.C., Arnold, R.G., 1995. Effect of temperature- controlled motility on transport of bacteria and microspheres through saturated sediment. Water Resour. Res., 31, 2, 271-280.10.1029/94WR02569Search in Google Scholar

McDowell-Boyer, L.M., Hunt, J.R., Sitar, N., 1986.Particle transport through porous media. Water Resour. Res., 22, 1901-1921.10.1029/WR022i013p01901Search in Google Scholar

McMurry, S.W., Coyne, M.S., Perfect, E., 1998. Fecal coliform transport through intact soil blocks amended with poultry manure. J. Environ. Qual., 27, 86-92.10.2134/jeq1998.00472425002700010013xSearch in Google Scholar

Mosaddeghi, M.R., Mahboubi, A.A., Zandsalimi, S., Unc, A., 2009. Influence of organic waste type and soil structure on the bacterial filtration rates in unsaturated intact soil columns. J. Environ. Manag., 90, 730-739.10.1016/j.jenvman.2008.01.009Search in Google Scholar

Nash, J.E., Sutcliffe J.V., 1970. River flow forecasting through conceptual models part I - A discussion of principles, J. Hydrol., 10, 3, 282-290.10.1016/0022-1694(70)90255-6Search in Google Scholar

Nelson, R.E., 1982. Carbonate and gypsum. In: Page, A.L., Miller, R.H., Keeney, D.R. (Eds.): Methods of Soil Analysis, part II: Chemical and Microbiological Properties, 2nd ed. (SSSA Book Series No. 5), Madison, Wisc.: Soil Science Society of America and American Society of Agronomy, pp. 181-198.Search in Google Scholar

Pachepsky, Y.A., Devin, B.A., Polyanskaya, L.M., Shelton, D.R., Shein, E.V., Guber, A.K., 2006. Limited entrapment model to simulate the breakthrough of Arthrobacter and Aquaspirillum in soil columns. Int. Agrophysics, 20, 207-218.Search in Google Scholar

Pang, L., 2009. Microbial removal rates in subsurface media estimated from published studies of field experiments and large intact soil cores. J. Environ. Qual., 38,1531-1559.10.2134/jeq2008.0379Search in Google Scholar

Pang, L., McLeod, M., Aislabie, J., Šimůnek, J., Close, M., Hector, R., 2008. Modeling transport of microbes in ten undisturbed soils under effluent irrigation.Vadose Zone J., 7, 1, 97-111.10.2136/vzj2007.0108Search in Google Scholar

Pivetz, B.E., Kelsey, I.W., Steenhuis, T.S., Alexander, M., 1996.A procedure to calculate biodegradation during preferential flow through heterogeneous soil columns. Soil Sci. Soc. Am. J., 60, 381-388.10.2136/sssaj1996.03615995006000020008xSearch in Google Scholar

Schijven, J.F., Hassanizadeh, S.M., de Bruin, H.A.M., 2002. Two-site kinetic modeling of bacteriophages transport through columns of saturated dune sand. J. Contam. Hydrol., 57, 259-279.10.1016/S0169-7722(01)00215-7Search in Google Scholar

Schijven, J., Šimůnek, J., 2002. Kinetic modeling of virus transport at field scale. J. Contam. Hydrol., 55, 1-2, 113-135.10.1016/S0169-7722(01)00188-7Search in Google Scholar

Simunek, J., Sejna, M., Saito, H., Sakai, M., van Genuchten, M.Th., 2008. The HYDRUS-1D software package for simulating the one-dimensional movement of water, heat, and multiple solutes in variably-saturated media, Version 4.0x, Hydrus Series 3. Department of Environmental Sciences, University of California Riverside, Riverside, CA, USA.Search in Google Scholar

Somasundaran P., Agar, G.E., 1967. The zero point of charge of calcite. J. Colloid Interface Sci., 24, 433-440.10.1016/0021-9797(67)90241-XSearch in Google Scholar

Stevik, T.K., Ausland, A.K., Hanssen, J.F., 2004. Retention and removal of pathogenic bacteria in wastewater percolating through porous media: a review. Water Res., 38, 1355-1367. 10.1016/j.watres.2003.12.02415016513Search in Google Scholar

Syngouna, V.I., Chrysikopoulos, C.V., 2011. Transport of biocolloids in water saturated columns packed with sand: Effect of grain size and pore water velocity. J. Contam. Hydrol., 126, 301-314.10.1016/j.jconhyd.2011.09.00722115094Search in Google Scholar

Toride, N., Leij, F.J., van Genuchten, M.Th., 1999. The CXTFIT Code for Estimating Transport Parameters from Laboratory or Field Tracer Experiments Version 2.1.Research Report, vol. 137.U.S. Salinity Laboratory, Riverside, CA.Search in Google Scholar

Tufenkji, N., 2007. Modeling microbial transport in porous media: Traditional approaches and recent developments. Advances in Water Res., 30, 1455-1469.10.1016/j.advwatres.2006.05.014Search in Google Scholar

Tufenkji, N., Elimelech, M., 2004. Correlation equation for predicting single-collector efficiency in physicochemical filtration in saturated porous media. Environ. Sci. Technol., 38, 529-536.10.1021/es034049r14750730Search in Google Scholar

Unc, A., Goss, M.J., 2003. Movement of faecal bacteria through the vadose zone. Water Air Soil Pollut., 149, 1-4, 327-337.10.1023/A:1025693109248Search in Google Scholar

Vanderborght, J., Vereecken, H., 2007. Review of dispersivity length for transport modeling in soils. Vadose Zone J., 6, 1, 29-52. 10.2136/vzj2006.0096Search in Google Scholar

van Elsas, J.D., Trevors, J.T., van Overbeek, L.S., 1991. Influence of soil properties on the vertical movement of genetically- marked Pseudomonas fluorescens through large soil microcosms. Biol. Fert. Soils, 10, 249-255.10.1007/BF00337375Search in Google Scholar

Wang, Y., Bradford, S.A., Simunek, J., 2013.Transport and fate of microorganisms in soils with preferential flow under different solution chemistry conditions.Water Resour. Res., 49, 1-13. 10.1002/wrcr.20174Search in Google Scholar

eISSN:
0042-790X
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Technik, Einführungen und Gesamtdarstellungen, andere