Uneingeschränkter Zugang

Therapeutic Angiogenesis for Severely Ischemic Limbs — from Bench to Bedside in Acute Vascular Care


Zitieren

1. Patel MR, Conte MS, Cutlip DE, et al. Evaluation and treatment of patients with lower extremity peripheral artery disease: consensus definitions from Peripheral Academic Research Consortium (PARC). J Am Coll Cardiol. 2015;65:931-941. doi: 10.1016/j.jacc.2014.12.036.10.1016/j.jacc.2014.12.036Open DOISearch in Google Scholar

2. Dua A, Lee CJ. Epidemiology of Peripheral Arterial Disease and Critical Limb Ischemia. Tech Vasc Interv Radiol. 2016;19:91-95. doi: 10.1053/j.tvir.2016.04.001.10.1053/j.tvir.2016.04.001Open DOISearch in Google Scholar

3. Eraso LH, Fukaya E, Mohler ER III., Xie D, Sha D, Berger JS. Peripheral arterial disease, prevalence and cumulative risk factor profile analysis. Eur J Prev Cardiol. 2014;21:704-711. doi:10.1177/2047487312452968.10.1177/2047487312452968Open DOISearch in Google Scholar

4. Fowkes F, Rudan D, Rudan I, et al. Comparison of global estimates of prevalence and risk factors for peripheral artery disease in 2000 and 2010: a systematic review and analysis. Lancet. 2013;382:1329-1340. doi: http://dx.doi.org/10.1016/S0140-6736(13)61249-0.10.1016/S0140-6736(13)61249-0Open DOISearch in Google Scholar

5. Varu VN, Hogg ME, Kibbe MR. Critical limb ischemia. J Vasc Surg. 2010;51:230-241. doi: 10.1016/j.jvs.2009.08.073.10.1016/j.jvs.2009.08.073Open DOISearch in Google Scholar

6. Abu Dabrh AM, Steffen MW, Undavalli C, et al. The natural history of untreated severe or critical limb ischemia. J Vasc Surg. 2015;62:1642-1651. doi: 10.1016/j.jvs.2015.07.065.10.1016/j.jvs.2015.07.065Open DOISearch in Google Scholar

7. Becker F, Robert-Ebadi H, Ricco JB, et al. Chapter I: definitions, epidemiology, clinical presentation and prognosis. Eur J Vasc Endovasc Surg. 2011;42:S4-S12. doi: 10.1016/S1078-5884(11)60009-9.10.1016/S1078-5884(11)60009-9Search in Google Scholar

8. Shishehbor MH, White CJ, Gray BH, Menard MT, Lookstein R, Jaff MR. Critical Limb Ischemia: An Expert Statement. J Am Coll Cardiol. 2016;68:2002-2015. doi:10.1016/j.jacc.2016.04.071.10.1016/j.jacc.2016.04.07127692726Search in Google Scholar

9. Dattilo PB, Casserly IP. Critical limb ischemia: endovascular strategies for limb salvage. Prog Cardiovasc Dis. 2011;54:47-60. doi: 10.1016/j.pcad.2011.02.009.10.1016/j.pcad.2011.02.00921722787Open DOISearch in Google Scholar

10. Mandolfino T, Canciglia A, Lamberto S, Calogero S, D'Alfonso M, Bottari A. Extreme endovascular revascularization for limb salvage in critical limb ischemia. Int Angiol. 2012;31:163-168.Search in Google Scholar

11. Callum K, Bradbury A. Acute limb ischaemia. BMJ : British Medical Journal. 2000;320:764-767.10.1136/bmj.320.7237.764111776910720362Search in Google Scholar

12. Beyersdorf F, Schlensak C. Controlled reperfusion after acute and persistent limb ischemia. Semin Vasc Surg. 2009;22:52-57. doi: 10.1053/j.semvascsurg.2009.01.005.10.1053/j.semvascsurg.2009.01.005Open DOISearch in Google Scholar

13. Gilliland C, Shah J, Martin JG, Miller MJ Jr. Acute Limb Ischemia. Tech Vasc Interv Radiol. 2017;20:274-280. doi: 10.1053/j.tvir.2017.10.008.10.1053/j.tvir.2017.10.008Open DOISearch in Google Scholar

14. Compagna R, Amato B, Massa S, et al. Cell Therapy in Patients with Critical Limb Ischemia. Stem Cells Int. 2015;2015:931420. doi: 10.1155/2015/931420.10.1155/2015/931420Search in Google Scholar

15. Simons JP, Goodney PP, Nolan BW, et al. Failure to achieve clinical improvement despite graft patency in patients undergoing infrainguinal lower extremity bypass for critical limb ischemia. J Vasc Surg. 2010;51:1419-1424. doi: 10.1016/j.jvs.2010.01.083.10.1016/j.jvs.2010.01.083Open DOISearch in Google Scholar

16. Lawall H, Bramlage P, Amann B. Stem cell and progenitor cell therapy in peripheral artery disease. A critical appraisal. Thromb Haemost. 2010;103:696-709. doi: 10.1160/TH09-10-0688.10.1160/TH09-10-0688Open DOISearch in Google Scholar

17. Adam DJ, Beard JD, Cleveland T, Bell J, Bradbury AW, Forbes JF. Bypass versus angioplasty in severe ischaemia of the leg (BASIL): multicentre, randomised controlled trial. Lancet. 2005;366:1925-1934. doi: 10.1016/S0140-6736(05)67704-5.10.1016/S0140-6736(05)67704-5Open DOISearch in Google Scholar

18. Fowkes FG, Murray GD, Butcher I, et al. Ankle brachial index combined with Framingham Risk Score to predict cardiovascular events and mortality: a meta-analysis. JAMA. 2008;300:197-208. doi: 10.1001/jama.300.2.197.10.1001/jama.300.2.197293262818612117Open DOISearch in Google Scholar

19. Kum S, Tan YK, Schreve MA, et al. Midterm Outcomes From a Pilot Study of Percutaneous Deep Vein Arterialization for the Treatment of No-Option Critical Limb Ischemia. J Endovasc Ther. 2017;24:619-626. doi: 10.1177/1526602817719283.10.1177/152660281771928328697694Open DOISearch in Google Scholar

20. Chen XP, Fu WM, Gu W. Spinal Cord stimulation for patients with inoperable chronic critical leg ischemia. World J Emerg Med. 2011;2:262-266. doi: 10.5847/wjem.j.1920-8642.2011.04.003.10.5847/wjem.j.1920-8642.2011.04.003412971925215020Open DOISearch in Google Scholar

21. Walker C. Pedal access in critical limb ischemia. J Cardiovasc Surg (Torino). 2014;55:225-227.10.1007/978-1-4614-7312-1_65Search in Google Scholar

22. Tawfick WA, Hamada N, Soylu E, Fahy A, Hynes N, Sultan S. Sequential compression biomechanical device versus primary amputation in patients with critical limb ischemia. Vasc Endovascular Surg. 2013;47:532-539. doi: 10.1177/1538574413499413.10.1177/153857441349941324052447Open DOISearch in Google Scholar

23. Qadura M, Terenzi DC, Verma S, Al-Omran M, Hess DA. Cell Therapy for Critical Limb Ischemia: An Integrated Review of Pre-clinical and Clinical Studies. Stem Cells. 2017; doi: 10.1002/stem.2751. [Epub ahead of print]10.1002/stem.2751.[EpubaheadprintOpen DOISearch in Google Scholar

24. Pignon B, Sevestre MA, Kanagaratnam L, et al. Autologous Bone Marrow Mononuclear Cell Implantation and Its Impact on the Outcome of Patients With Critical Limb Ischemia – Results of a Randomized, Double-Blind, Placebo-Controlled Trial. Circ J. 2017;81:1713-1720. doi: 10.1253/circj.CJ-17-0045.10.1253/circj.CJ-17-0045Open DOISearch in Google Scholar

25. Ismail AM, Abdou SM, Aty HA, et al. Autologous transplantation of CD34(+) bone marrow derived mononuclear cells in management of non-reconstructable critical lower limb ischemia. Cytotechnology. 2016;68:771-781. doi: 10.1007/s10616-014-9828-7.10.1007/s10616-014-9828-7Open DOISearch in Google Scholar

26. Perotti C, Arici V, Cervio M, et al. Allogeneic lethally irradiated cord blood mononuclear cells in no-option critical limb ischemia: a “box of rain”. Stem Cells Dev. 2013;22:2806-2812. doi: 10.1089/scd.2013.0172.10.1089/scd.2013.0172Open DOISearch in Google Scholar

27. Liew A, O'Brien T. Therapeutic potential for mesenchymal stem cell transplantation in critical limb ischemia. Stem Cell Res Ther. 2012;3:28. doi: 10.1186/scrt119.10.1186/scrt119Open DOISearch in Google Scholar

28. Koshikawa M, Shimodaira S, Yoshioka T, et al. Therapeutic angiogenesis by bone marrow implantation for critical hand ischemia in patients with peripheral arterial disease: a pilot study. Curr Med Res Opin. 2006;22:793-798. doi: 10.1185/030079906X1000078.10.1185/030079906X1000078Open DOISearch in Google Scholar

29. Hernández P1, Cortina L, Artaza H, et al. Autologous bone-marrow mononuclear cell implantation in patients with severe lower limb ischaemia: a comparison of using blood cell separator and Ficoll density gradient centrifugation. Atherosclerosis. 2007;194:e52-56. doi: 10.1016/j.atherosclerosis.2006.08.025.10.1016/j.atherosclerosis.2006.08.025Open DOISearch in Google Scholar

30. Lachmann N, Nikol S. Therapeutic angiogenesis for peripheral artery disease: stem cell therapy. Vasa. 2007;36:241-251. doi:10.1024/0301-1526.36.4.241.10.1024/0301-1526.36.4.241Open DOISearch in Google Scholar

31. Napoli C, Farzati B, Sica V, et al. Beneficial effects of autologous bone marrow cell infusion and antioxidants/L-arginine in patients with chronic critical limb ischemia. Eur J Cardiovasc Prev Rehabil. 2008;15:709-718. doi: 10.1097/HJR.0b013e3283193a0f.10.1097/HJR.0b013e3283193a0fOpen DOISearch in Google Scholar

32. Risau W. Mechanisms of angiogenesis. Nature. 1997;386:671-674. doi: 10.1038/386671a0.10.1038/386671a0Open DOISearch in Google Scholar

33. Ouma GO, Zafrir B, Mohler ER 3rd, Flugelman MY. Therapeutic angiogenesis in critical limb ischemia. Angiology. 2013;64:466-480. doi: 10.1177/0003319712464514.10.1177/0003319712464514Open DOISearch in Google Scholar

34. Annex BH. Therapeutic angiogenesis for critical limb ischaemia. Nat Rev Cardiol. 2013;10:387-396. doi: 10.1038/nrcardio.2013.70.23670612Search in Google Scholar

35. Carmeliet P. Mechanisms of angiogenesis and arteriogenesis. Nat Med. 2000;6:389-395.10.1038/74651Open DOISearch in Google Scholar

36. Davies MG. Criticial Limb Ischemia: Epidemiology. Methodist DeBakey Cardiovascular Journal. 2012;8:10-14.10.14797/mdcj-8-4-10Search in Google Scholar

37. Ribatti D, Vacca A, Nico B, Presta M, Roncali L. Angiogenesis: basic and clinical aspects. Ital J Anat Embryol. 2003;108:1-24.Search in Google Scholar

38. Semenza GL. Vasculogenesis, angiogenesis, and arteriogenesis: mechanisms of blood vessel formation and remodeling. J Cell Biochem. 2007;102:840-847. doi: 10.1002/jcb.21523.10.1002/jcb.21523Open DOISearch in Google Scholar

39. Axnick J, Lammert E. Vascular lumen formation. Curr Opin Hematol. 2012;19:192-198. doi: 10.1097/MOH.0b013e3283523ebc.10.1097/MOH.0b013e3283523ebcOpen DOISearch in Google Scholar

40. Zhu S, Liu X, Li Y, Goldschmidt-Clermont PJ, Dong C. Aging in the atherosclerosis milieu may accelerate the consumption of bone marrow endothelial progenitor cells. Arterioscler Thromb Vasc Biol. 2007;27:113-119. doi: 10.1161/01.ATV.0000252035.12881.d0.10.1161/01.ATV.0000252035.12881.d0Open DOISearch in Google Scholar

41. van Royen N, Piek JJ, Buschmann I, Hoefer I, Voskuil M, Schaper W. Stimulation of arteriogenesis; a new concept for the treatment of arterial occlusive disease. Cardiovasc Res. 2001;49:543-553.10.1016/S0008-6363(00)00206-6Search in Google Scholar

42. Helisch A, Schaper W. Arteriogenesis: the development and growth of collateral arteries. Microcirculation. 2003;10:83-97. doi: 10.1038/sj.mn.7800173.10.1038/sj.mn.780017312610665Search in Google Scholar

43. Cai W, Schaper W. Mechanisms of arteriogenesis. Acta Biochim Biophys Sin (Shanghai). 2008;40:681-92.10.1093/abbs/40.8.681Search in Google Scholar

44. Fung E, Helisch A. Macrophages in Collateral Arteriogenesis. Frontiers in Physiology. 2012;3:353. doi:10.3389/fphys.2012.00353.10.3389/fphys.2012.00353Open DOISearch in Google Scholar

45. Jaipersad AS, Lip GY, Silverman S, Shantsila E. The role of monocytes in angiogenesis and atherosclerosis. J Am Coll Cardiol. 2014;63:1-11. doi: 10.1016/j.jacc.2013.09.019.10.1016/j.jacc.2013.09.019Open DOISearch in Google Scholar

46. Sanada F, Taniyama Y, Azuma J, et al. Therapeutic Angiogenesis by Gene Therapy for Critical Limb Ischemia: Choice of Biological Agent. Immunology, Endocrine & Metabolic Agents in Medicinal Chemistry. 2014;14:32-39. doi: 10.2174/1871522213999131231105139.10.2174/1871522213999131231105139Open DOISearch in Google Scholar

47. Liew A, Bhattacharya V, Shaw J, Stansby G. Cell Therapy for Critical Limb Ischemia: A Meta-Analysis of Randomized Controlled Trials. Angiology. 2016;67:444-455. doi: 10.1177/0003319715595172.10.1177/0003319715595172Open DOISearch in Google Scholar

48. Tongers J, Roncalli JG, Losordo DW. Therapeutic angiogenesis for critical limb ischemia: microvascular therapies coming of age. Circulation. 2008;118:9-16. doi: 10.1161/CIRCULATIONAHA.108.784371.10.1161/CIRCULATIONAHA.108.784371Open DOISearch in Google Scholar

49. Cross MJ, Claesson-Welsh L. FGF and VEGF function in angiogenesis: signalling pathways, biological responses and therapeutic inhibition. Trends Pharmacol Sci. 2001;22:201-207.10.1016/S0165-6147(00)01676-XSearch in Google Scholar

50. Ho TK, Rajkumar V, Ponticos M, et al. Increased endogenous angiogenic response and hypoxia-inducible factor-1alpha in human critical limb ischemia. J Vasc Surg. 2006;43:125-133. doi: 10.1016/j.jvs.2005.08.042.10.1016/j.jvs.2005.08.042Open DOISearch in Google Scholar

51. Henning RJ. Therapeutic angiogenesis: angiogenic growth factors for ischemic heart disease. Future Cardiol. 2016;12:585-599. doi: 10.2217/fca-2016-0006.10.2217/fca-2016-0006Open DOISearch in Google Scholar

52. Tille JC, Wood J, Mandriota SJ, et al. Vascular endothelial growth factor (VEGF) receptor-2 antagonists inhibit VEGF-and basic fibroblast growth factor-induced angiogenesis in vivo and in vitro. J Pharmacol Exp Ther. 2001;299:1073-1085.Search in Google Scholar

53. Kim SK, Lee J, Song M, et al. Combination of three angiogenic growth factors has synergistic effects on sprouting of endothelial cell/mesenchymal stem cell-based spheroids in a 3D matrix. J Biomed Mater Res B Appl Biomater. 2016;104:1535-1543. doi: 10.1002/jbm.b.33498.10.1002/jbm.b.33498Open DOISearch in Google Scholar

54. Lederman RJ, Mendelsohn FO, Anderson RD, et al. Therapeutic angiogenesis with recombinant fibroblast growth factor-2 for intermittent claudication (the TRAFFIC study): a randomised trial. Lancet. 2002;359:2053-2058.10.1016/S0140-6736(02)08937-7Search in Google Scholar

55. Rajagopalan S, Mohler E 3rd, Lederman RJ, et al. Regional Angiogenesis with Vascular Endothelial Growth Factor (VEGF) in peripheral arterial disease: Design of the RAVE trial. Am Heart J. 2003;145:1114-1118. doi: 10.1016/S0002-8703(03)00102-9.10.1016/S0002-8703(03)00102-9Open DOISearch in Google Scholar

56. Nikol S, Baumgartner I, Van Belle E, et al. Therapeutic angiogenesis with intramuscular NV1FGF improves amputation-free survival in patients with critical limb ischemia. Mol Ther. 2008;16:972-978. doi: 10.1038/mt.2008.33.10.1038/mt.2008.3318388929Open DOISearch in Google Scholar

57. Creager MA, Olin JW, Belch JJ, et al. Effect of hypoxia-inducible factor-1alpha gene therapy on walking performance in patients with intermittent claudication. Circulation. 2011;124:1765-1773. doi: 10.1161/CIRCULATIONAHA.110.009407.10.1161/CIRCULATIONAHA.110.00940721947297Open DOISearch in Google Scholar

58. Gu Y, Zhang J, Guo L, Cui S, Li X, Ding D, et al. A phase I clinical study of naked DNA expressing two isoforms of hepatocyte growth factor to treat patients with critical limb ischemia. J Gene Med. 2011;13:602-610. doi: 10.1002/jgm.1614.10.1002/jgm.161422015632Open DOISearch in Google Scholar

59. Conte MS, Bandyk DF, Clowes AW, et al. Results of PREVENT III: a multicenter, randomized trial of edifoligide for the prevention of vein graft failure in lower extremity bypass surgery. J Vasc Surg. 2006;43:742-751. doi: 10.1016/j.jvs.2005.12.058.10.1016/j.jvs.2005.12.05816616230Open DOISearch in Google Scholar

60. Comerota AJ, Throm RC, Miller KA, et al. Naked plasmid DNA encoding fibroblast growth factor type 1 for the treatment of end-stage unreconstructible lower extremity ischemia: preliminary results of a phase I trial. J Vasc Surg. 2002;35:930-936.10.1067/mva.2002.12367712021709Open DOISearch in Google Scholar

61. Asahara T, Murohara T, Sullivan A, et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science. 1997;275:964-967.10.1126/science.275.5302.9649020076Search in Google Scholar

62. Gupta R, Losordo DW. Cell Therapy for Critical Limb Ischemia Moving Forward One Step at a Time. Circ Cardiovasc Interv. 2011;4:2-5. doi: 10.1161/CIRCINTERVENTIONS.110.960716.10.1161/CIRCINTERVENTIONS.110.960716312377821325196Open DOISearch in Google Scholar

63. Nizankowski R, Petriczek T, Skotnicki A, Szczeklik A. The treatment of advanced chronic lower limb ischaemia with marrow stem cell autotransplantation. Kardiol Pol. 2005;63:351-360.Search in Google Scholar

64. Tanaka M, Taketomi K, Yonemitsu Y. Therapeutic angiogenesis: recent and future prospects of gene therapy in peripheral artery disease. Curr Gene Ther. 2014;14:300-308.10.2174/15665232140414090212483825197884Open DOISearch in Google Scholar

65. Procházka V, Gumulec J, Chmelová J, et al. Autologous bone marrow stem cell transplantation in patients with end-stage chronical critical limb ischemia and diabetic foot. Vnitr Lek. 2009;55:173-178.Search in Google Scholar

66. Brewster L, Robinson S, Wang R, et al. Expansion and angiogenic potential of mesenchymal stem cells from patients with critical limb ischemia. J Vasc Surg. 2017;65:826-838. doi: 10.1016/j.jvs.2015.02.061.10.1016/j.jvs.2015.02.061499677726921003Open DOISearch in Google Scholar

67. Kawamura A, Horie T, Tsuda I, et al. Clinical study of therapeutic angiogenesis by autologous peripheral blood stem cell (PBSC) transplantation in 92 patients with critically ischemic limbs. J Artif Organs. 2006;9:226-233. doi: 10.1007/s10047-006-0351-2.10.1007/s10047-006-0351-217171401Open DOISearch in Google Scholar

68. Huang PP, Yang XF, Li SZ, Wen JC, Zhang Y, Han ZC. Randomised comparison of G-CSF-mobilized peripheral blood mononuclear cells versus bone marrow-mononuclear cells for the treatment of patients with lower limb arteriosclerosis obliterans. Thromb Haemost. 2007;98:1335-1342.10.1160/TH07-02-013718064333Search in Google Scholar

69. Botti C, Maione C, Coppola A, Sica V, Cobellis G. Autologous bone marrow cell therapy for peripheral arterial disease. Stem Cells and Cloning: Advances and Applications. 2012;5:5-14. doi:10.2147/SCCAA.S28121.10.2147/SCCAA.S28121378176124198534Open DOISearch in Google Scholar

70. Motukuru V, Suresh KR, Vivekanand V, Raj S, Girija KR. Therapeutic angiogenesis in Buerger's disease (thromboangiitis obliterans) patients with critical limb ischemia by autologous transplantation of bone marrow mononuclear cells. J Vasc Surg. 2008;48:53S-60S. doi: 10.1016/j.jvs.2008.09.005.10.1016/j.jvs.2008.09.00519084740Open DOISearch in Google Scholar

71. Ruiz-Salmeron R, de la Cuesta-Diaz A, Constantino-Bermejo M, et al. Angiographic demonstration of neoangiogenesis after intra-arterial infusion of autologous bone marrow mononuclear cells in diabetic patients with critical limb ischemia. Cell Transplant. 2011;20:1629-1639. doi: 10.3727/096368910X0177.10.3727/096368910X017722289660Open DOISearch in Google Scholar

72. Huang P, Li S, Han M, Xiao Z, Yang R, Han ZC. Autologous transplantation of granulocyte colony-stimulating factor-mobilized peripheral blood mononuclear cells improves critical limb ischemia in diabetes. Diabetes Care. 2005;28:2155-2160.10.2337/diacare.28.9.215516123483Open DOISearch in Google Scholar

73. Lara-Hernandez R, Lozano-Vilardell P, Blanes P, Torreguitart-Mirada N, Galmés A, Besalduch J. Safety and efficacy of therapeutic angiogenesis as a novel treatment in patients with critical limb ischemia. Ann Vasc Surg. 2010;24:287-294. doi: 10.1016/j.avsg.2009.10.012.10.1016/j.avsg.2009.10.01220142004Open DOISearch in Google Scholar

74. Burt RK, Testori A, Oyama Y, et al. Autologous peripheral blood CD133+ cell implantation for limb salvage in patients with critical limb ischemia. Bone Marrow Transplant. 2010;45:111-116. doi: 10.1038/bmt.2009.102.10.1038/bmt.2009.102395186019448678Open DOISearch in Google Scholar

75. Losordo DW, Kibbe MR, Mendelsohn F, et al. A Randomized, Controlled Pilot Study of Autologous CD34+ Cell Therapy for Critical Limb Ischemia. Circulation Cardiovascular interventions. 2012;5:821-830. doi:10.1161/CIRCINTERVENTIONS.112.968321.10.1161/CIRCINTERVENTIONS.112.968321354939723192920Open DOISearch in Google Scholar

76. Dash NR, Dash SN, Routray P, Mohapatra S, Mohapatra PC. Targeting nonhealing ulcers of lower extremity in human through autologous bone marrow-derived mesenchymal stem cells. Rejuvenation Res. 2009;12:359-366. doi: 10.1089/rej.2009.0872.10.1089/rej.2009.087219929258Open DOISearch in Google Scholar

77. Yan J, Tie G, Xu TY, Cecchini K, Messina LM. Mesenchymal stem cells as a treatment for peripheral arterial disease: current status and potential impact of type II diabetes on their therapeutic efficacy. Stem Cell Rev. 2013;9:360-372. doi: 10.1007/s12015-013-9433-8.10.1007/s12015-013-9433-8Open DOISearch in Google Scholar

78. Bura A, Planat-Benard V, Bourin P, et al. Phase I trial: the use of autologous cultured adipose-derived stroma/stem cells to treat patients with non-revascularizable critical limb ischemia. Cytotherapy. 2014;16:245-257. doi: 10.1016/j.jcyt.2013.11.011.10.1016/j.jcyt.2013.11.011Open DOISearch in Google Scholar

79. Das AK, Bin Abdullah BJ, Dhillon SS, Vijanari A, Anoop CH, Gupta PK. Intra-arterial allogeneic mesenchymal stem cells for critical limb ischemia are safe and efficacious: report of a phase I study. World J Surg. 2013;37:915-922. doi: 10.1007/s00268-012-1892-6.10.1007/s00268-012-1892-6Open DOISearch in Google Scholar

80. Gyöngyösi M, Hemetsberger R, Wolbank S, et al. Delayed recovery of myocardial blood flow after intracoronary stem cell administration. Stem Cell Rev. 2011;7:616-623. doi: 10.1007/s12015-010-9213-7.10.1007/s12015-010-9213-7Open DOISearch in Google Scholar

81. Gyöngyösi M, Wojakowski W, Lemarchand P, et al. Meta-Analysis of Cell-based CaRdiac stUdiEs (ACCRUE) in patients with acute myocardial infarction based on individual patient data. Circ Res. 2015;116:1346-1360. doi: 10.1161/CIRCRESAHA.116.304346.10.1161/CIRCRESAHA.116.304346Open DOISearch in Google Scholar

82. Moazzami K, Majdzadeh R, Nedjat S. Local intramuscular transplantation of autologous mononuclear cells for critical lower limb ischaemia. Cochrane Database Syst Rev. 2011;12:CD008347. doi: 10.1002/14651858.CD008347.pub2.10.1002/14651858.CD008347.pub2Open DOISearch in Google Scholar

83. Takagi G, Miyamoto M, Tara S, et al. Therapeutic vascular angiogenesis for intractable macroangiopathy-related digital ulcer in patients with systemic sclerosis: a pilot study. Rheumatology (Oxford). 2014;53:854-859. doi: 10.1093/rheumatology/ket432.10.1093/rheumatology/ket432Open DOISearch in Google Scholar

84. Amato B, Compagna R, Della Corte GA, et al. Peripheral blood mono-nuclear cells implantation in patients with peripheral arterial disease: a pilot study for clinical and biochemical outcome of neoangiogenesis. BMC Surgery. 2012;12:S1. doi:10.1186/1471-2482-12-S1-S1.10.1186/1471-2482-12-S1-S1Open DOISearch in Google Scholar

85. Maksimov AV, Kiiasov AP, Plotnikov MV, et al. Outcomes of using autologous peripheral-blood stem cells in patients with chronic lower arterial insufficiency. Angiol Sosud Khir. 2011;17:11-15.Search in Google Scholar

86. Tateishi-Yuyama E, Matsubara H, Murohara T, et al. Therapeutic angiogenesis for patients with limb ischaemia by autologous transplantation of bone-marrow cells: a pilot study and a randomised controlled trial. Lancet. 2002;360:427-435. doi: 10.1016/S0140-6736(02)09670-8.10.1016/S0140-6736(02)09670-8Open DOISearch in Google Scholar

87. Procházka V, Gumulec J, Jalůvka F, et al. Cell therapy, a new standard in management of chronic critical limb ischemia and foot ulcer. Cell Transplant. 2010;19:1413-1424. doi: 10.3727/096368910X514170.10.3727/096368910X514170547838220529449Open DOISearch in Google Scholar

88. Walter DH, Krankenberg H, Balzer JO, et al. Intraarterial administration of bone marrow mononuclear cells in patients with critical limb ischemia: a randomized-start, placebo-controlled pilot trial (PROVASA). Circ Cardiovasc Interv. 2011;4:26-37. doi: 10.1161/CIRCINTERVENTIONS.110.958348.10.1161/CIRCINTERVENTIONS.110.95834821205939Open DOISearch in Google Scholar

89. Cobellis G, Silvestroni A, Lillo S, et al. Long-term effects of repeated autologous transplantation of bone marrow cells in patients affected by peripheral arterial disease. Bone Marrow Transplant. 2008;42:667-672. doi: 10.1038/bmt.2008.228.10.1038/bmt.2008.22818695661Open DOISearch in Google Scholar

90. Van Tongeren RB, Hamming JF, Fibbe WE, et al. Intramuscular or combined intramuscular/intra-arterial administration of bone marrow mononuclear cells: a clinical trial in patients with advanced limb ischemia. J Cardiovasc Surg (Torino). 2008;49:51-58.Search in Google Scholar

91. Matoba S, Tatsumi T, Murohara T, et al. Long-term clinical outcome after intramuscular implantation of bone marrow mononuclear cells (Therapeutic Angiogenesis by Cell Transplantation [TACT] trial) in patients with chronic limb ischemia. Am Heart J. 2008;156:1010-1018. doi: 10.1016/j.ahj.2008.06.025.10.1016/j.ahj.2008.06.02519061721Open DOISearch in Google Scholar

92. Amann B, Luedemann C, Ratei R, Schmidt-Lucke JA. Autologous bone marrow cell transplantation increases leg perfusion and reduces amputations in patients with advanced critical limb ischemia due to peripheral artery disease. Cell Transplant. 2009;18:371-380.10.3727/09636890978853494219500466Open DOISearch in Google Scholar

93. Lawall H, Bramlage P, Amann B. Treatment of peripheral arterial disease using stem and progenitor cell therapy. J Vasc Surg. 2011;53:445-453. doi: 10.1016/j.jvs.2010.08.060.10.1016/j.jvs.2010.08.06021030198Open DOISearch in Google Scholar

94. Dhong Z, Chen B, Fu W, et al. Transplantation of purified CD34+ cells in the treatment of critical limb ischemia. Journal of Vascular Surgery. 2013;58:404-411. doi: http://dx.doi.org/10.1016/j.jvs.2013.01.037.10.1016/j.jvs.2013.01.03723611711Open DOISearch in Google Scholar

95. Rigato M, Monami M, Fadini GP. Autologous Cell Therapy for Peripheral Arterial Disease: Systematic Review and Meta-Analysis of Randomized, Nonrandomized, and Noncontrolled Studies. Circ Res. 2017;120:1326-1340. doi: 10.1161/CIRCRESAHA.116.309045.10.1161/CIRCRESAHA.116.30904528096194Open DOISearch in Google Scholar

96. Idei N, Soga J, Hata T, et al. Autologous bone-marrow mononuclear cell implantation reduces long-term major amputation risk in patients with critical limb ischemia: a comparison of atherosclerotic peripheral arterial disease and Buerger disease. Circ Cardiovasc Interv. 2011;4:15-25. doi: 10.1161/CIRCINTERVENTIONS.110.955724.10.1161/CIRCINTERVENTIONS.110.95572421205941Open DOISearch in Google Scholar

97. Heeschen C, Lehmann R, Honold J, et al. Profoundly reduced neovascularization capacity of bone marrow mononuclear cells derived from patients with chronic ischemic heart disease. Circulation. 2004;109:1615-1622. doi: 10.1161/01.CIR.0000124476.32871.E3.10.1161/01.CIR.0000124476.32871.E315037527Open DOISearch in Google Scholar

98. Li TS, Kubo M, Ueda K, et al. Identification of risk factors related to poor angiogenic potency of bone marrow cells from different patients. Circulation. 2009;120:S255-261. doi: 10.1161/CIRCULATIONAHA.108.837039.10.1161/CIRCULATIONAHA.108.83703919752376Open DOISearch in Google Scholar

99. Gyöngyösi M, Hemetsberger R, Posa A, et al. Hypoxiainducible factor 1-alpha release after intracoronary versus intramyocardial stem cell therapy in myocardial infarction. J Cardiovasc Transl Res. 2010;3:114-121. doi: 10.1007/s12265-009-9154-1.10.1007/s12265-009-9154-120560024Open DOISearch in Google Scholar

100. Gremmels H, Teraa M, Quax PH, den Ouden K, Fledderus JO, Verhaar MC. Neovascularization capacity of mesenchymal stromal cells from critical limb ischemia patients is equivalent to healthy controls. Mol Ther. 2014;22:1960-1970. doi: 10.1038/mt.2014.161.10.1038/mt.2014.161442973825174586Open DOISearch in Google Scholar

101. Benedek I, Bucur O, Benedek T. Intracoronary infusion of mononuclear bone marrow-derived stem cells is associated with a lower plaque burden after four years. J Atheroscler Thromb. 2014;21:217-229.10.5551/jat.1974524126180Open DOISearch in Google Scholar

102. Madaric J, Klepanec A, Valachovicova M, et al. Characteristics of responders to autologous bone marrow cell therapy for no-option critical limb ischemia. Stem Cell Res Ther. 2016;7:116. doi: 10.1186/s13287-016-0379-z.10.1186/s13287-016-0379-z498796827530339Open DOISearch in Google Scholar

103. Powell RJ, Marston WA, Berceli SA, et al. Cellular therapy with Ixmyelocel-T to treat critical limb ischemia: the randomized, double-blind, placebo-controlled RESTORE-CLI trial. Mol Ther. 2012;20:1280-1286. doi: 10.1038/mt.2012.52.10.1038/mt.2012.52336929122453769Open DOISearch in Google Scholar

104. Jadlowiec C, Brenes RA, Li X, et al. Stem cell therapy for critical limb ischemia: what can we learn from cell therapy for chronic wounds? Vascular. 2012;20:284-289. doi: 10.1258/vasc.2011.201206.10.1258/vasc.2011.201206367565023086986Open DOISearch in Google Scholar

eISSN:
2457-5518
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Medizin, Klinische Medizin, Allgemeinmedizin, Innere Medizin, Kardiologie, Intensivmedizin und Notfallmedizin, Radiologie