Uneingeschränkter Zugang

The Use of Biomarkers for the Early Detection of Vulnerable Atherosclerotic Plaques and Vulnerable Patients. A Review


Zitieren

1. World Health Organisation, Cardiovascular disease (CVDs), 2016. Available from: http://www.who.int/mediacentre/factsheets/fs317/en/#Search in Google Scholar

2. Oldridge N, Guyatt G, Jones N, et al. Effects on quality of life with comprehensive rehabilitation after acute myocardial infarction. Am J Cardiol. 1991;67:1084-1089.10.1016/0002-9149(91)90870-QSearch in Google Scholar

3. Fox KA, Birkhead J, Wilcox R, Knight C, Barth J. British Cardiac Society Working Group on the definition of myocardial infarction. Heart. 2004;90:603-609. doi: 10.1136/hrt.2004.038679.10.1136/hrt.2004.038679176825315145852Search in Google Scholar

4. Choy SY, Mintz GS. What have we learned about plaque rupture in acute coronary syndromes? Curr Cardiol Rep. 2010;12:338-343. doi: 10.1007/s11886-010-0113-x.10.1007/s11886-010-0113-x20425160Search in Google Scholar

5. Kajander OA, Pinilla-Echeverri N, Jolly SS, et al. Culprit plaque morphology in STEMI – an optical coherence tomography study: insights from the TOTAL-OCT substudy. EuroIntervention. 2016;12:716-723. doi: 10.4244/EIJV12I6A116.10.4244/EIJV12I6A11627542783Search in Google Scholar

6. Virmani R, Burke AP, Farb A, Kolodgie FD. Pathology of the unstable plaque. J Am Coll Cardiol. 2006;47:C13-C18. doi: 10.1016/j.jacc.2005.10.065.10.1016/j.jacc.2005.10.06516631505Search in Google Scholar

7. Lafont A. Basic aspects of plaque vulnerability. Heart. 2003;89:1262-1267.10.1136/heart.89.10.1262176789812975444Search in Google Scholar

8. Cuesta J, Rivero F, Bastante T, Benedicto A, Diego G, Alfonso F. Sealing a ruptured non-culprit coronary plaque in a patient with acute myocardial infarction with bioresorbable vascular scaffolds. Rev Port Cardiol. 2015;34:213.e1-3. doi: 10.1016/j.repc.2014.08.029.10.1016/j.repc.2014.08.02925707734Search in Google Scholar

9. Waxman S, Ishibashi F, Muller JE. Detection and Treatment of Vulnerable Plaques and Vulnerable Patients Novel Approaches to Prevention of Coronary Events. Circulation. 2006;114:2390-2411. doi: 10.1161/CIRCULATIONAHA.105.540013.10.1161/CIRCULATIONAHA.105.54001317130356Search in Google Scholar

10. Mittal B, Mishra A, Srivastava A, Kumar S, Garg N. Matrix metalloproteinases in coronary artery disease. Adv Clin Chem. 2014;64:1-72.10.1016/B978-0-12-800263-6.00001-X24938016Search in Google Scholar

11. Minamisawa M, Motoki H, Izawa A, et al. Comparison of Inflammatory Biomarkers in Outpatients With Prior Myocardial Infarction. Int Heart J. 2016;57:11-17. doi: 10.1536/ihj.15-197.10.1536/ihj.15-19726742699Search in Google Scholar

12. Koening W, Karakas M, Zierer A, et al. Oxidized LDL and the Risk of Coronary Heart Disease: Results from the MONICA/KORA Augsburg Study. Clin Chem. 2011;57:1196-200. doi: 10.1373/clinchem.2011.165134.10.1373/clinchem.2011.16513421697499Search in Google Scholar

13. Chan DC, Watts GF. Apolipoproteins as markers and managers of coronary risk. QJ Med 2006;99:277-287. doi: 10.1093/qjmed/hcl027.10.1093/qjmed/hcl02716504986Search in Google Scholar

14. Sreckovic B, Sreckovic VD, Soldatovic I, et al. Homocysteine is a marker for metabolic syndrome and atherosclerosis. Diabetes Metab Syndr. 2016;pii:S1871-4021(16)30200-4. doi: 10.1016/j.dsx.2016.08.026. [Epub ahead of print]10.1016/j.dsx.2016.08.02627600468Search in Google Scholar

15. Greco S, Zaccagnini G, Voellenkle C, Martelli F. microRNAs in ischaemic cardiovascular diseases. Eur Heart J. 2016;18: E31-E36. doi: http://dx.doi.org/10.1093/eurheartj/suw012.Search in Google Scholar

16. Madjid M, Willerson JT. Inflammatory markers in coronary heart disease. Br Med Bull. 2011;100:23-38. doi: 10.1093/bmb/ldr043.10.1093/bmb/ldr04322010105Search in Google Scholar

17. Hadi HA, Carr CS, Al Suwaidi J. Endothelial Dysfunction: Cardiovascular Risk Factors, Therapy, and Outcome. Vasc Health Risk Manag. 2005;1:183-198.Search in Google Scholar

18. Bentzon JF, Otsuka F, Virmani R, Falk E. Mechanisms of plaque formation and rupture. Circ Res. 2014;114:1852-1866. doi: 10.1161/CIRCRESAHA.114.302721.10.1161/CIRCRESAHA.114.30272124902970Search in Google Scholar

19. Razzouk L, Fusaro M, Esquitin R. Novel biomarkers for risk stratification and identification of life-threatning cardiovascular disease: troponin and beyond. Curr Cardiol Rev. 2012;8:109-115.10.2174/157340312801784943340627022708908Search in Google Scholar

20. Wang J, Balu N, Canton G, Yuan C. Imaging Biomarkers of Cardiovascular Disease. J Magn Reson Imaging. 2010;32:502-515. doi: 10.1002/jmri.22266.10.1002/jmri.22266293530920815049Search in Google Scholar

21. Andreou I, Antoniadis AP, Shishido K, et al. How do we prevent the vulnerable atherosclerotic plaque from rupturing? Insights from in vivo assessments of plaque, vascular remodeling, and local endothelial shear stress. J Cardiovasc Pharmacol Ther. 2015;20:261-275. doi: 10.1177/1074248414555005.10.1177/107424841455500525336461Search in Google Scholar

22. Cordeiro MAS, Lima JAC. Atherosclerotic plaque characterization by multidetector row computed tomography angiography. J Am Coll Cardiol. 2006;47:C40-C47. doi: 10.1016/j.jacc.2005.09.076.10.1016/j.jacc.2005.09.07616631509Search in Google Scholar

23. Hoffmann U, Moselewski F, Nieman K, et al. Noninvasive assessment of plaque morphology and composition in culprit and stable lesions in acute coronary syndrome and stable lesions in stable angina by multidetector computed tomography. J Am Coll Cardiol. 2006;47:1655-1662. doi: 10.1016/j.jacc.2006.01.041.10.1016/j.jacc.2006.01.04116631006Search in Google Scholar

24. Hodas R, Pop S, Opincariu D, et al. Correlations between severity of coronary lesions and epicardial fat volume in patients with coronary artery disease – a multislice CT based study. Journal of Interdisciplinary Medicine. 2016;1:71-78. doi: 10.1515/jim-2016-0014.10.1515/jim-2016-0014Search in Google Scholar

25. Zhou Y, Wei Y, Wang X, et al. Decreased adiponectin and increased inflammation expression in epicardial adipose tissue in coronary artery disease. Cardiovascular Diabetology. 2011;10:2.10.1186/1475-2840-10-2303265821226932Search in Google Scholar

26. Samady H, Eshtehardi P, McDaniel MC, et al. Coronary artery wall shear stress is associated with progression and transformation of atherosclerotic plaque and arterial remodeling in patients with coronary artery disease. Circulation. 2011;124:779-788. doi: 10.1161/CIRCULATIONAHA.111.021824.10.1161/CIRCULATIONAHA.111.02182421788584Search in Google Scholar

27. Cecchi E, Giglioli C, Valente S, et al. Role of hemodynamic shear stress in cardiovascular disease. Atherosclerosis. 2011;214:249-256. doi: 10.1016/j.atherosclerosis.2010.09.008.10.1016/j.atherosclerosis.2010.09.00820970139Search in Google Scholar

28. Sinclair H, Bourantas C, Bagnall A, Mintz GS, Kunadian V. OCT for identification of Vulnerable Plaque in Acute Coronary Syndrome. JACC Cardiovasc Imaging. 2015;8:198-209. doi: 10.1016/j.jcmg.2014.12.005.10.1016/j.jcmg.2014.12.00525677892Search in Google Scholar

29. Jaguszewski M, Klingenberg R, Landmesser U. Intracoronary Near Infrared Spectroscopy (NIRS) Imaging for Detection of Lipid Content of Coronary Plaques: Current Experience and Future Perspectives. Curr Cardiovasc Imaging Rep. 2013;6:426-430. doi: 10.1007/s12410-013-9224-2.10.1007/s12410-013-9224-2378404824098825Search in Google Scholar

30. Ferrante G, Presbitero P, Whitbourn R, Barlis P. Current applications of optical coherence tomography for coronary intervention. Int J Cardiol. 2013;165:7-16. doi: 10.1016/j.ijcard.2012.02.013.10.1016/j.ijcard.2012.02.01322405134Search in Google Scholar

31. Motoyama S, Masayoshi S, Harigaya H, et al. Computed tomographic angiography characteristics of atherosclerotic plaques subsequently resulting in acute coronary syndrome. J Am Coll Cardiol. 2009;54:49-57. doi: 10.1016/j.jacc.2009.02.068.10.1016/j.jacc.2009.02.06819555840Search in Google Scholar

32. Maurovich-Horvat P, Schlett CL, Alkadhi H, et al. The napkin-ring sign indicates advanced atherosclerotic lesions in coronary CT angiography. JACC Cardiovasc Imaging. 2012;5:1243-1252. doi: 10.1016/j.jcmg.2012.03.019.10.1016/j.jcmg.2012.03.01923236975Search in Google Scholar

33. Maurovich-Horvat P, Hoffman U, Vorpahl M, Nakano M, Virmani R, Alkadhi H. The Napkin-Ring Sign: CT Signature of High-Risk Coronary Plaques? JACC Cardiovascular Imaging. 2010;3:440-444. doi: 10.1016/j.jcmg.2010.02.003.10.1016/j.jcmg.2010.02.003Search in Google Scholar

34. Benedek T, Gyöngyösi M, Benedek I. Multislice computed tomographic coronary angiography for quantitative assessment of culprit lesions in acute coronary syndromes. Can J Cardiol. 2013;29:364-371. doi: 10.1016/j.cjca.2012.11.004.10.1016/j.cjca.2012.11.004Search in Google Scholar

35. Batty JA, Subba S, Luke P, Gigi LWC, Sinclair H, Kunadian V. Intracoronary imaging in the detection of vulnerable plaques. Curr Cardiol Rep. 2016;18:28. doi: 10.1007/s11886-016-0705-1.10.1007/s11886-016-0705-1Search in Google Scholar

36. Finn AV, Chandrashekhar Y, Narula J. Vulnerable plaques: from PROSPECT to prospects... JACC Cardiovasc Imaging. 2012;5:334-336. doi: 10.1016/j.jcmg.2012.02.004.10.1016/j.jcmg.2012.02.004Search in Google Scholar

37. Kataoka Y, John JS, Wolski K, et al. Larger lipid pools associate with features of plaque vulnerability on optical coherence tomography. J Am Coll Cardiol. 2013;61(10_S). doi:10.1016/S0735-1097(13)61795-7.10.1016/S0735-1097(13)61795-7Search in Google Scholar

38. Benedek T, Jako B, Benedek I. Plaque Quantification by Coronary CT and Intravascular Ultrasound Identifies a Low CT Density Core as a Marker of Plaque Instability in Acute Coronary Syndromes. Int Heart J. 2014;55:22-28.10.1536/ihj.13-21324463925Search in Google Scholar

39. Oemrawsingh RM, Garcia-Garcia HM, van Geuns RJ, et al. Integrated Biomarker and Imaging Study 3 (IBIS-3) to assess the ability of rosuvastatin to decrease necrotic core in coronary arteries. EuroIntervention. 2016;12:734-739. doi: 10.4244/EIJV12I6A118.10.4244/EIJV12I6A11827542785Search in Google Scholar

40. Thondapu V, Bourantas CV, Foin N, Jang IK, Serryus PW, Barlis P. Biomechanical stress in coronary atherosclerosis: emerging insights from computational modelling. Eur Hear J. 2016; pii:ehv689. doi: http://dx.doi.org/10.1093/eurheartj/ehv689ehv689. [Epub ahead of print].Search in Google Scholar

41. Wentzel JJ, Chatzizisis YS, Gijesen JH, Giannoglou GD, Feldman CL, Stone PH. Endothelial shear stress in the evolution of coronary atherosclerotic plaque and vascular remodeling: current understanding and remaining questions. Cardiovasc Res. 2012;96:234-243. doi: 10.1093/cvr/cvs217.10.1093/cvr/cvs21722752349Search in Google Scholar

42. Koskinas KC, Chatzizisis YS, Baker AB, Edelman ER, Stone PH, Feldman CL. The role of low shear stress in the conversion of atherosclerotic lesions form stable to unstable plaque. Curr Opin Cardiol. 2009;24:580-590. doi: 10.1097/HCO.0b013e328331630b.10.1097/HCO.0b013e328331630b19809311Search in Google Scholar

43. Yi Wang, Juhui Qiu, Shisui Luo, et al. High shear stress induces atherosclerotic vulnerable plaque formation through angiogenesis. Regen Biomater. 2016;3:257-267. doi: 10.1093/rb/rbw021.10.1093/rb/rbw021Search in Google Scholar

44. Weis SM, Cheresh DA. Pathophysiological consequences of VEGF-induced vascular permeability. Nature. 2005;437:497-504. doi: 10.1038/nature03987.10.1038/nature03987Search in Google Scholar

45. Norgaard BL, Leipsic J, Gaur S, et al. Diagnostic Performance of Noninvasive Fractional Flow Reserve Derived from Coronary Computed Tomography Angiography in Suspected Coronary Artery Disease. J Am Coll Cardiol. 2014;63:1145-1155. doi: 10.1016/j.jacc.2013.11.043.10.1016/j.jacc.2013.11.043Search in Google Scholar

46. Secchi F, Alì M, Faggiano E, et al. Fractional flow reserve based on computed tomography: an overview. Eur Heart J. 2016;18:E49-E56.10.1093/eurheartj/suw014Search in Google Scholar

47. Nakazato R, Park HB, Gransar H, et al. Additive diagnostic value of atherosclerotic plaque characteristics to non-invasive FFR for identification of lesions causing ischaemia: results from a prospective international multicentre trial. EuroIntervention. 2016;12:473-481. doi: 10.4244/EIJY15M09_02.10.4244/EIJY15M09_02Search in Google Scholar

48. Ahmadi A, Stone GW, Leipsic J, et al. Association of Coronary Stenosis and Plaque Morphology With Fractional Flow Reserve and Outcomes. JAMA Cardiol. 2016;1:350-357. doi: 10.1001/jamacardio.2016.0263.10.1001/jamacardio.2016.0263Search in Google Scholar

49. Bala G, Blykers A, Xavier C, et al. Targeting of vascular cell adhesion molecule-1 by 18F-labelled nanobodies for PET/CT imaging of inflamed atherosclerotic plaques. Eur Heart J Cardiovasc Imaging. 2016;17:1001-1008. doi: 10.1093/ehjci/jev346.10.1093/ehjci/jev346Search in Google Scholar

50. Shah PK. Mechanisms of plaque and rupture. J Am Coll Cardiol. 2003;41:15S-22S.10.1016/S0735-1097(02)02834-6Search in Google Scholar

51. Kolodgie FD, Gold HK, Burke AP, et al. Intraplaque hemorrhage and progression of coronary atheroma. N Engl J Med. 2003;349:2316-2325.10.1056/NEJMoa03565514668457Search in Google Scholar

52. Davies MJ. Acute coronary thrombosis: the role of plaque disruption and its initiation and prevention. Eur Heart J. 1995;16:3-7.10.1093/eurheartj/16.suppl_L.38869011Search in Google Scholar

53. Tu C, Ng TSC, Sohi H, et al. Receptor targeted Iron Oxide Nanoparticles for Molecular MR imaging of inflamed Atherosclerotic Plaques. Biomaterials. 2011;32:7209-7216. doi: 10.1016/j.biomaterials.2011.06.026.10.1016/j.biomaterials.2011.06.026314841221742374Search in Google Scholar

54. Weissleder R, Nahrendorf M, Pittet MJ. Imaging Macrophages with nanoparticles. Nature Materials. 2014;13:125-138. doi: 10.1038/nmat3780.10.1038/nmat378024452356Search in Google Scholar

55. Cormode DP, Jarzyna PA, Mulder WJM, Fayad ZA. Modified natural nanoparticles as contrast agents for medical imaging. Adv Drug Deliv Rev. 2010;62:329-338. doi: 10.1016/j.addr.2009.11.005.10.1016/j.addr.2009.11.005282766719900496Search in Google Scholar

56. Cormode DP, Naha PC, Fayad ZA. Nanoparticle Contrast Agents for Computed Tomography: A Focus On Micelles. Contrast Media Mol Imaging. 2014;9:37-52. doi: 10.1002/cmmi.1551.10.1002/cmmi.1551390562824470293Search in Google Scholar

57. von zur Muhlen C, Fink Petri A, Salaklang J, et al. Imaging monocytes with iron oxide nanoparticles targeted towards the monocyte integrin MAC-1 (CD11b/CD18) does not result in improved atherosclerotic plaque detection by in vivo MRI. Contrast Media Mol Imaging. 2010;5:268-275. doi: 10.1002/cmmi.384.10.1002/cmmi.38420973112Search in Google Scholar

58. Tavakoli S, Vashist A, Sadeghi MM. Molecular Imaging of Plaque Vunerability. J Nuc Cardiol. 2014;21:1112-1128. doi: 10.1007/s12350-014-9959-4.10.1007/s12350-014-9959-4422944925124827Search in Google Scholar

eISSN:
2457-5518
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Medizin, Klinische Medizin, Intensivmedizin und Notfallmedizin, Radiologie, Allgemeinmedizin, Innere Medizin, Kardiologie