Zitieren

Alaux, C., Brunet, J. L., Dussaubat, C., Mondet, F., Tchamitchan, S., Cousin, M., Brillard, J., Baldy, A., Belzunces, L. P., Le Conte, Y. (2010a). Interactions between Nosema microspores and a neonicotinoid weaken honeybees (Apis mellifera). Environmental Microbiology, 12, 774-782. doi:10.1111/j.1462-2920.2009.02123.x.Search in Google Scholar

Alaux, C., Ducloz, F., Crauser, D., Le Conte, Y. (2010b). Diet effects on honeybee immunocompetence. Biology Letters, 6 (4), 562-565.10.1098/rsbl.2009.0986293619620089536Search in Google Scholar

Alberoni, D., Gaggìa, F., Baffoni, L., Di Gioia, D. (2016). Beneficial microorganisms for honey bees: problems and progresses. Applied Microbiology and Biotechnolology, 100, 9469-9482. doi: 10.1007/s00253-016-7870-4.Search in Google Scholar

Amdam, G. V., & Omholt, S. W. (2002). The Regulatory Anatomy of Honeybee Lifespan. Journal Theoretical Biology, 216, 209-228.10.1006/jtbi.2002.254512079372Search in Google Scholar

Anon (1979). BioRad Laboratories Bulletin 1069: BioRad protein assay instruction manual. BioRad Laboratories, Richmond, California, USA. 17pp.Search in Google Scholar

Antúnez, K., Martín-Hernández, R., Prieto, L., Meana, A., Zunino, P., Higes, M. (2009), Immune suppression in the honey bee (Apis mellifera) following infection by Nosema ceranae (Microsporidia). Environmental Microbiology, 11, 2284-2290. doi:10.1111/j.1462-2920.2009.01953.x.Search in Google Scholar

Arrese, E. L., & Soulages, J. L. (2010). Insect Fat Body: Energy, Metabolism, and Regulation. Annual Review of Entomology, 55, 207-25. doi: 10.1146/annurevento-112408-085356.Search in Google Scholar

Audisio, C. M. (2016). Gram-Positive Bacteria with Probiotic Potential for the Apis mellifera L. Honey Bee: The Experience in the Northwest of Argentina. Probiotics and Microbials Proteins, 1-10. doi: 10.1007 / s12602-016-9231-0.Search in Google Scholar

Audisio, M. C., & Benítez-Ahrendts, M. R. (2011). Lactobacillus johnsonii CRL1647, isolated from Apis mellifera L. bee-gut, exhibited a beneficial effect on honeybee colonies. Beneficial Microbes, 2(1), 29-34.Search in Google Scholar

Audisio, M. C., Torres, M. J., Sabaté, D. C., Ibarguren, C., Apella, M. C. (2011). Properties of different lactic acid bacteria isolated from Apis mellifera L. beegut. Microbiological Research, 1, 1-13.Search in Google Scholar

Audisio, M. C., Sabaté, D. C., Benítez-Ahrendts, M. R. (2015). Effect of Lactobacillus johnsonii CRL1647 on different parameters of honeybee colonies and bacterial populations of the bee gut. Beneficial Microbes, 25, 1-10. doi: 10.3920/BM2014.0155Search in Google Scholar

Baffoni, L., Gaggìa, F., Alberoni, D., Cabbri, R., Nanetti, A., Biavati, B., Di Gioia, D. (2016). Effect of dietary supplementation of Bifidobacterium and Lactobacillus strains in Apis mellifera L. against Nosema ceranae. Benefical Microbes, 7(1), 45-51. doi:10.3920/BM2015.0085Search in Google Scholar

Bogdanov, S. (2006). Contaminants of bee products. Apidologie, 37, 1-18.10.1051/apido:2005043Search in Google Scholar

Bowen-Walker, P. L., & Gunn, A. (2001). The effect of the ectoparasitic mite, Varroa destructor on adult worker honeybee (Apis mellifera) emergence weights, water, protein, carbohydrate, and lipid levels. Entomologia Experimentalis et Applicata, 101(3), 207-217.10.1046/j.1570-7458.2001.00905.xSearch in Google Scholar

Bradford, M. (1976). A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein dye-binding. Annals of Biochemistry, 72, 248-254.10.1016/0003-2697(76)90527-3Search in Google Scholar

Branco, M. R., Kid, N. A. C., & Pickard, R. S. (1999). Development of Varroa jacobsoni in colonies of Apis mellifera iberica in a Mediterranean climate. Apidologie, 30, 491-503.10.1051/apido:19990604Search in Google Scholar

Brodschneider, R., & Crailsheim, K. (2010). Nutrition and health in honey bees. Apidologie, 41(3), 278-294.10.1051/apido/2010012Search in Google Scholar

Brown, M. J. F., Moret, Y., & Schmid-hempel, P. (2003). Activation of host constitutive immune defence by an intestinal trypanosome parasite of bumble bees. Parasitology, 126, 253-260.10.1017/S003118200200275512666884Search in Google Scholar

Cantwell, G. E. (1970). Standard methods for counting Nosema spores. American Bee Journal, 110(6), 222-223.Search in Google Scholar

Corby-Harris, V., Snyder, L., Meador, C. A., Naldo, R., Mott, B., Anderson, K. E. (2016). Parasaccharibacter apium, gen. nov., sp. nov., improves honey bee (Hymenoptera: Apidae) resistance to Nosema. Journal of Economic Entomology, doi:10.1603/ICE.2016.94339Search in Google Scholar

Corona, M., Velarde, R. A., Remolina, S., Adrienne Moran-Lauter, A., Wang, Y., Hughes, K. A., Robinson, G. E. (2007). Vitellogenin, juvenile hormone, insulin signaling, and queen honey bee longevity. National Academy of Sciences, 104 (17), 7128-7133.10.1073/pnas.0701909104185233017438290Search in Google Scholar

Crotti, E., Balloi, A., Hamdi, C., Sansonno, L., Marzorati, M., Gonella, E., Favia, G., Cherif, A., Bandi, C., Alma, A., Daffonchio, D. (2012). Microbial symbionts: a resource for the management of insect-related problems. Microbiology Biotechnology, 5, 307-317. doi:10.1111/j.1751- 7915.2011.00312.x.Search in Google Scholar

de Oliveira, V. T. P., & da Cruz-landim, C. (2003). Morphology and function of insect fat body cells: a review. Biociências, 11 (2), 195-205.Search in Google Scholar

Dillon, R. J., & Dillon, V. M. (2004). The gut bacteria of insects: Nonpathogenic Interactions. Annual Review of Entomology, 49, 71-92.10.1146/annurev.ento.49.061802.12341614651457Search in Google Scholar

Ellers, J. (1996). Fat and eggs: an alternative method to measure the trade-off between survival and reproduction in insect parasitoids. Netherlands Journal of Zoology, 46, 227-235.10.1163/156854295X00186Search in Google Scholar

Engel, P., Martinson, V. G., Moran, N. A. (2012). Functional diversity within the simple gut microbiota of the honey bee. Proceedings of the National Academy of Sciences of the United States of America, 109(27), 11002-11007.10.1073/pnas.1202970109339088422711827Search in Google Scholar

Evans, J. D., & Lopez, D. L. (2004). Bacterial probiotics induce an immune response in the honey bee (Hymenoptera: Apidae). Journal of economic entomology, 97(3), 752-6.10.1093/jee/97.3.752Search in Google Scholar

Forsgren, E., Olofsson, T. C., Vásquez, A., Fries, I. (2009). Novel lactic acid bacteria inhibiting Paenibacillus larvae in honey bee larvae. Apidologie, 41(1), 99-108.10.1051/apido/2009065Search in Google Scholar

Forsgren, E., Fries, I. (2010). Comparative virulence of Nosema ceranae and Nosema apis in individual European honey bees. Veterinary Parasitology, 170, 212-217. doi:10.1016/j.vetpar.2010.02.010Search in Google Scholar

Fries, I. (1988). Infectivity and multiplication of Nosema apis z. in the ventriculus of the honey bee. Apidologie, 19(3), 319-328.10.1051/apido:19880310Search in Google Scholar

Fries, I. (2010). Nosema ceranae in European honey bees (Apis mellifera). Journal of Invertebrate Pathology, 103, S73-S79.10.1016/j.jip.2009.06.01719909977Search in Google Scholar

Fries, I. F., da Silva, A., Slemenda, S. B., Pieniazek, N. J. (1996). Nosema ceranae n. sp. (Microspora, Nosematidae), Morphological and Molecular Characterization of a Microsporidian Parasite of the Asian Honey bee Apis cerana (Hymenoptera, Apidae). European Journal of Protistology, 32(3), 356-365.Search in Google Scholar

Gündüz, E. A., & Douglas, A. E. (2009). Symbiotic bacteria enable insect to use a nutritionally inadequate diet. Proceedings of the Royal Society London Biology Science, 276, 987-991. doi:10.1098/rspb.2008.1476Search in Google Scholar

Higes, M., Martín, R., & Meana, A. (2006). Nosema ceranae, a new microsporidian parasite in honeybees in Europe. Journal of Invertebrate Pathology, 92, 93-95.10.1016/j.jip.2006.02.00516574143Search in Google Scholar

Higes, M., García-Palencia, P., Martín-Hernández, R., Meana, A. (2007). Experimental infection of Apis mellifera honeybees with Nosema ceranae (Microsporidia). Journal of Invertebrate Pathology, 94, 211-217.10.1016/j.jip.2006.11.00117217954Search in Google Scholar

Higes, M., Martín-Hernández, R., Botías, C., Bailón, E. G., González-Porto, A. V., Barrios, L., del Nozal, M. J., Bernal, J. L., Jiménez, J. J., Palencia, P. G., Meana, A. (2008). How natural infection by Nosema ceranae causes honeybee colony collapse. Environmental Microbiology, 10, 2659-2669. doi:10.1111/j.1462-2920.2008.01687.xSearch in Google Scholar

Janashia, I., & Alaux, C. (2016). Specific Immune Stimulation by Endogenous Bacteria in Honey Bees (Hymenoptera: Apidae). Journal of Economic Entomology, 1-4. doi: 10.1093/jee/tow065.Search in Google Scholar

Jefferson, J. M., Dolstad, H. A., Sivalingam, M. D., Snow, J. W. (2013). Barrier immune effectors are maintained during transition from nurse to forager in the honey bee. PLoS One, 8(1), e54097. doi:10.1371/journal.pone.0054097Search in Google Scholar

Maggi, M., Ruffinengo, S., Damiani, N., Sardella, N., Eguaras, M. (2009). First detection of Varroa destructor resistance to coumaphos in Argentina. Experimental and Applied Acarology, 47, 317-320.10.1007/s10493-008-9216-019009360Search in Google Scholar

Maggi, M., Ruffinengo, S., Negri, P., Eguaras, M. (2010). Resistance phenomena to amitraz from populations of the ectoparasitic mite Varroa destructor o f A rgentina. Parasitology Research, 107, 1189-1192.10.1007/s00436-010-1986-820668878Search in Google Scholar

Maggi, M., Ruffinengo, S., Mendoza, Y., Ojeda, P., Ramallo, G., Floris, I., Eguaras, M. (2011). Susceptibility of Varroa destructor (Acari: Varroidae) to synthetic acaricides in Uruguay: Varroa mites’ potential to develop acaricide resistance. Parasitology Research, 108, 815-821.10.1007/s00436-010-2122-520978789Search in Google Scholar

Maggi, M., Negri, P., Plischuk, S., Szawarski, N., De Piano, F., De Feudis, L., Eguaras, M., Audisio, C. (2013). Effects of the organic acids produced by a lactic acid bacterium in Apis mellifera colony development, Nosema ceranae control and fumagillin efficiency. Vet erinary Microbiology, 167, 474-483.10.1016/j.vetmic.2013.07.03023978352Search in Google Scholar

Mattila, H. R., Rios, D., Walker-Sperling, V. E., Roeselers, G., Newton, I. L. G. (2012). Characterization of the active microbiotas associated with honey bees reveals healthier and broader communities when colonies are genetically diverse. PLoS ONE, 7(3), e32962. doi:10.1371/journal.pone.0032962Search in Google Scholar

Medici, S. (2010.) Determinación del contenido de residuos de acaricidas y antibióticos en miel y cera en colmenares argentinos destinados a la producción. Suplemento APINOTIC&AS 2.Search in Google Scholar

Moran, N. A. (2015). Genomics of the honey bee microbiome. Current Opinion in Insect Science, 10, 22-28. doi:10.1016/j.cois.2015.04.003Search in Google Scholar

Naug, D. (2009). Nutritional stress due to habitat loss may explain recent honeybee colony collapses. Biological Conservation, 142 (10), 2369-2372.10.1016/j.biocon.2009.04.007Search in Google Scholar

Neumann, P., & Carreck, N. L. (2010). Honey bee colony losses. Journal of Apicultural Research, 49(1), 1-6.10.3896/IBRA.1.49.1.01Search in Google Scholar

Newton, I. L., Sheehan, K. B., Lee, F.J., Horton, M. A., Hicks, R. D. (2013). Invertebrate systems for hypothesis- driven microbiome research. Microbiome Science and Medicine, 1(1). doi:10.2478/micsm-2013-0001Search in Google Scholar

Oldroyd, B. P., (2007). What’s killing American honey bees? PLoS Biology, 5(6), e168. doi:10.1371/journal.pbio.0050168.Search in Google Scholar

Paxton, R. (2010). Does infection by Nosema ceranae cause “Colony Collapse Disorder” in honey bees (Apis mellifera)? Journal of Apicultural Research, 49(1), 80-84. doi: 10.3896/IBRA.1.49.1.11Search in Google Scholar

Porrini, M. P., Audisio, M. C., Sabaté, D. C., Ibarguren, C., Medici, S. K., Sarlo, E. G., Garrido, P. M., Eguaras, M. (2010). Effect of bacterial metabolites on microsporidian Nosema ceranae and on its host Apis mellifera. Parasitology research, 107(2), 381-8.10.1007/s00436-010-1875-120467753Search in Google Scholar

Sabaté, D. C., Carrillo, L., & Audisio, M. C. (2009). Inhibition of Paenibacillus larvae and Ascosphaera apis by Bacillus subtilis isolated from honeybee gut and honey samples. Research in Microbiology, 160, 193-199.10.1016/j.resmic.2009.03.00219358885Search in Google Scholar

Sabaté, D. C., Cruz, M. S., Benítez-Ahrendts, M. R., Audisio, M. C. (2012). Beneficial Effects of Bacillus subtilis subsp. subtilis Mori2, a Honey-Associated Strain, on Honeybee Colony Performance. Probiotics and Antimicrobial Proteins, 4, 39-46.Search in Google Scholar

Simion, G., Trif, A., Cara, M. C. & Damiescu, L. (2011). Evaluation of tetracyclines’ and cloramphenicol’s residues levels in honey from Timis County between 2007 and 2010. (1), 264-269.Search in Google Scholar

Smart, M., & Sheppard, M. (2012). Nosema ceranae in age cohorts of the western honey bee (Apis mellifera). Journal of Invertebrate Pathology, 109, 148-151.10.1016/j.jip.2011.09.00922001631Search in Google Scholar

Undeen, A. H., & Vávra, J. (1997). Research methods for entomopathogenic Protozoa. Manual of Techniques in Insect Pathology. Academic Press, London. pp. 117-151.10.1016/B978-012432555-5/50010-5Search in Google Scholar

vanEngelsdorp, D., Evans, J. D., Saegerman, C., Mullin, C., Haubruge, E., Nguyen, B. K., Frazier, M., Frazier, J., Coxfoster, D., Chen, Y., Underwood, R. M., Tarpy, D. R., Pettis, J. S. (2009). Colony Collapse Disorder: a descriptive study. PloS ONE, 4(8), e6481. doi:10.1371/journal.pone.0006481Search in Google Scholar

Vásquez, A., Forsgren, E., Fries, I., Paxton, R., Flaberg, E., Szekely, L., Olofsson, T. C. (2012). Symbionts as major modulators of insect health: lactic acid bacteria and honeybees. PLoS ONE, 7 (3), e33188. doi: 10.1371 / journal.pone.0033188Search in Google Scholar

Wilson-Rich, N., Dres, S. T., & Starks, P. T. (2008). The ontogeny of immunity: development of innate immune strength in the honey bee (Apis mellifera). Journal of insect physiology, 54(10-11), 1392-9.10.1016/j.jinsphys.2008.07.01618761014Search in Google Scholar

Yoshiyama, M., & Kimura, K. (2009). Bacteria in the gut of Japanese honeybee, Apis cerana japonica, and their antagonistic effect against Paenibacillus larvae, the causal agent of American foulbrood. Journal of Invertebrate Pathology, 102, 91-96. doi:10.1016/j.jip.2009.07.005Search in Google Scholar

Yoshiyama, M., Sugimura, Y., Takaya, N., Kimoto-Nira, H., Suzuki, C. (2013). Inhibition of Paenibacillus larvae by lactic acid bacteria isolated from fermented materials. Journal of Invertebrate Pathology, 112, 62-67. doi:10.1016/j.jip.2012.09.002Search in Google Scholar

eISSN:
2299-4831
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
2 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Biologie, Zoologie, andere