Uneingeschränkter Zugang

The Sigma Cognitive Architecture and System: Towards Functionally Elegant Grand Unification


Zitieren

Anderson, J. R. 1983. The Architecture of Cognition. Cambridge, MA: Harvard University Press.Search in Google Scholar

Anderson, J. R. 1990. The Adaptive Character of Thought. Hillsdale, NJ: Lawrence Erlbaum Associates.Search in Google Scholar

Anderson, J. R. 2002. Spanning seven orders of magnitude: A challenge for cognitive modeling. Cognitive Science. 26: 85-112.10.1207/s15516709cog2601_3Search in Google Scholar

Anderson, J. R. 2007. How Can the Human Mind Occur in the Physical Universe. Oxford: Oxford University Press.10.1093/acprof:oso/9780195324259.001.0001Search in Google Scholar

Anderson, J. R.; Bothell, D.; Byrne, M. D.; Douglass, S., Lebiere, C.; and Qi, Y. 2004. An integrated theory of the mind. Psychological Review. 111: 1036-1060.10.1037/0033-295X.111.4.1036Search in Google Scholar

Badler, N. I. 1997. Real-time virtual humans. In Proceedings of the IEEE Workshop on Non-Rigid and Articulated Motion, 28-36.Search in Google Scholar

Bach, J. 2015. Modeling motivation in MicroPsi 2. In Proceedings of the 8th Conference on Artificial General Intelligence, 3-13.Search in Google Scholar

Bailey, T.; and Durrant-Whyte, H. 2006. Simultaneous localisation and mapping (SLAM): Part II State of the art. Robotics and Automation Magazine. 13: 108–117.10.1109/MRA.2006.1678144Search in Google Scholar

Bell, C. G.; and Newell, A. 1971. Computer Structures: Readings and Examples. New York, NY: McGraw-Hill.Search in Google Scholar

Bengio, Y.; Ducharme, R.; Vincent, P.; and Janvin, C. 2003. A neural probabilistic language model. The Journal of Machine Learning Research. 3: 1137-1155.Search in Google Scholar

Best, B.; Lebiere, C.; and Scarpinatto, C. 2002. A model of synthetic opponents in MOUT training simulations using the ACT-R cognitive architecture. In Proceedings of the Eleventh Conference on Computer Generated Forces and Behavior Representation.10.1037/e617892011-143Search in Google Scholar

Bonasso, R. P.; Firby, R. J.; Gat, E.; Kortenkamp, D.; Miller, D. P.; and Slack, M. G. 1997. Experiences with an Architecture for Intelligent Reactive Agent. Journal of Experimental and Theoretical Artificial Intelligence. 9: 237-256.10.1080/095281397147103Search in Google Scholar

Bostrom, N. 2001. Are you living in a computer simulation? Philosophical Quarterly. 53: 243-255.10.1111/1467-9213.00309Search in Google Scholar

Bridewell, W.; and Langley, P. 2011. A computational account of everyday abductive inference. In Proceedings of the Thirty-Third Annual Meeting of the Cognitive Science Society, 2289-2294.Search in Google Scholar

Bubic, A.; von Cramon, D. Y.; and Schubotz, R. I. 2010. Prediction, cognition and the brain. Frontiers in Human Neuroscience. 4: 25.Search in Google Scholar

Campbell, J.; Core, M.; Artstein, R.; Armstrong, L.; Hartholt, A.; Wilson, C.; Georgila, K.; Morbini, F.; Haynes, E.; Gomboc, D.; Birch, M.; Bobrow, J.; Chad Lane, H.; Gerten, J.; Leuski, A.; Traum, D.; Trimmer, M.; DiNinni, R.; Bosack, M.; Jones, T.; Clark, R.E.; and Yates, K.A., 2011. Developing INOTS to Support Interpersonal Skills Practice. In Proceedings of the Thirty-second Annual IEEE Aerospace Conference, 1-14.10.1109/AERO.2011.5747535Search in Google Scholar

Card, S. K.; Moran, T.P.; and Newell, A. 1983. The Psychology of Human-Computer Interaction. Hillsdale, NJ: Lawrence Erlbaum Associates.Search in Google Scholar

Cassimatis, N. 2002. Polyscheme: A Cognitive Architecture for Integrating Multiple Representation and Inference Schemes. Ph.D. diss., Media Laboratory, MIT, Cambridge, Mass.Search in Google Scholar

Chater, N.; Oaksford, M. 1999. Ten years of the rational analysis of cognition. Trends in Cognitive Sciences. 3: 57–65.10.1016/S1364-6613(98)01273-XSearch in Google Scholar

Chen, J.; Demski, A.; Han, T.; Morency, L-P.; Pynadath, D.; Rafidi, N.; and Rosenbloom, P. S. 2011. Fusing symbolic and decision-theoretic problem solving + perception in a graphical cognitive architecture. In Proceedings of the 2nd International Conference on Biologically Inspired Cognitive Architectures, 64-72.Search in Google Scholar

Collobert, R.; and Weston, J. 2008. A unified architecture for natural language processing: Deep neural networks with multitask learning. In Proceedings of the 25th international conference on Machine learning, 160-167.Search in Google Scholar

Coste-Manière, E.; and Simmons, R. G. 2000. Architecture, the backbone of robotic systems. In Proceedings of the International Conference on Robotics and Automation, 67-72.Search in Google Scholar

Dancy, C. L.; Ritter, F. E.; and Berry, K. 2012. Towards adding a physiological substrate to ACT-R. In Proceedings of the 21st Conference on Behavior Representation in Modeling and Simulation, 78-85.Search in Google Scholar

Deering, S. 1988. Watching the waist of the protocol hourglass. Keynote address at ICNP ‘98. de Kleer, J. 1986. An assumption-based TMS. Artificial Intelligence. 28:127–162.Search in Google Scholar

Dempster, A.P.; Laird, N.M.; and Rubin, D.B. 1977. Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society. 39: 1–38.10.1111/j.2517-6161.1977.tb01600.xSearch in Google Scholar

Derbinsky, N.; Laird, J. E.; and Smith, B. 2010. Towards efficiently supporting large symbolic declarative memories. In Proceedings of the 10th International Conference on Cognitive Modeling, 49-54.Search in Google Scholar

Deutsch, D. 2011. The Beginning of Infinity: Explanations that Transform the World. London, UK: Penguin Books.Search in Google Scholar

Domingos, P.; and Lowd, D. 2009. Markov Logic: An Interface Layer for Artificial Intelligence. San Raphael, CA: Morgan & Claypool.10.2200/S00206ED1V01Y200907AIM007Search in Google Scholar

Douglass, S.; Ball, J.; & Rodgers, S. 2009. Large declarative memories in ACT-R. In Proceedings of the 9th International Conference of Cognitive Modeling, 222-227.Search in Google Scholar

Eliasmith, C. 2013. How to Build a Brain: A Neural Architecture for Biological Cognition. Oxford: Oxford University Press.10.1093/acprof:oso/9780199794546.001.0001Search in Google Scholar

Falkenhainer, B; Forbus, K. D.; and Gentner, D 1989. The structure-mapping engine: Algorithm and examples. Artificial Intelligence. 41: 1–63.10.1016/0004-3702(89)90077-5Search in Google Scholar

Fikes, R., Hart, P; and Nilsson, N. 1972. Learning and Executing Generalized Robot Plans, Artificial Intelligence. 3: 251-288.10.1016/0004-3702(72)90051-3Search in Google Scholar

Forbus, K. D.; and Hinrichs, T. R. 2006. Companion Cognitive Systems: A step towards human-level AI. AI Magazine. 27:83-95.Search in Google Scholar

Forgy, C. L. 1982. Rete: A fast algorithm for the many pattern/many object pattern match problem. Artificial Intelligence. 19: 17-37.10.1016/0004-3702(82)90020-0Search in Google Scholar

Frackowiak R; and Markram H. 2015. The future of human cerebral cartography: a novel approach. Philosophical Transactions of the Royal Society of London B: Biological Sciences. 370.10.1098/rstb.2014.0171438751225823868Search in Google Scholar

Frintrop, S.; Rome, E.; and Christensen, H.I. 2010: Computational visual attention systems and their cognitive foundation: A survey. ACM Transactions on Applied Perception. 7.10.1145/1658349.1658355Search in Google Scholar

Garten, J.; Sagae, K.; Ustun, V.; and Dehghani, M. 2015. Combining distributed vector representations for words. In Proceedings of the NAACL Workshop on Vector Space Modeling for NLP, 95-101.Search in Google Scholar

Goertzel, B. 2014. Artificial General Intelligence: Concept, State of the Art, and Future Prospects. Journal of Artificial General Intelligence. 5:1-46.10.2478/jagi-2014-0001Search in Google Scholar

Goertzel, B.; Pennachin, C.; and Geisweiller, N. 2014. Engineering General Intelligence. Amsterdam: Atlantis Press.10.2991/978-94-6239-027-0Search in Google Scholar

Goodman, N. D.; Mansinghka, V. K.; Roy, D.; Bonawitz, K.; and Tenenbaum, J. B. 2008. Church: a language for generative models. In Proceedings of the 24th Conference on Uncertainty in Artificial Intelligence, 220-229.Search in Google Scholar

Hartholt, A.; Traum, D. Marsella, S. C.; Shapiro, A.; Stratou, G.; Leuski, A.; Morency, L.-P.; and Gratch, J. 2013. All together now: Introducing the Virtual Human Toolkit. In Proceedings of the 13th International Conference on Intelligent Virtual Agents, 368-381.Search in Google Scholar

Hutter, M. 2005. Universal Artificial Intelligence: Sequential Decisions Based on Algorithmic Probability. Berlin: Springer-Verlag.Search in Google Scholar

Itti, L.; and Baldi, P.F. 2006. Bayesian surprise attracts human attention. In Advances in Neural Information Processing Systems 18, 547-554.Search in Google Scholar

Itti, L.; and Borji, A. 2013. State-of-the-art in visual attention modeling. IEEE Transactions on Pattern Analysis and Machine Intelligence. 35: 185-207.10.1109/TPAMI.2012.8922487985Search in Google Scholar

Jilk, D. J.; Lebiere, C.; O’Reilly, R. C. and Anderson, J. R. 2008. SAL: An explicitly pluralistic cognitive architecture. Journal of Experimental and Theoretical Artificial Intelligence. 20: 197-218.10.1080/09528130802319128Search in Google Scholar

Jones, M. N.; and Mewhort, D. J. 2007. Representing word meaning and order information in a composite holographic lexicon. Psychological review. 114: 1-37.10.1037/0033-295X.114.1.1Search in Google Scholar

Jordan, M. I.; and Sejnowski, T. J. 2001. Graphical Models: Foundations of Neural Computation. Cambridge, MA: MIT Press.10.7551/mitpress/3349.001.0001Search in Google Scholar

Joshi, H.; Rosenbloom, P. S.; and Ustun, V. 2014. Isolated word recognition in the Sigma cognitive architecture. Biologically Inspired Cognitive Architectures. 10: 1-9.10.1016/j.bica.2014.11.001Search in Google Scholar

Kahneman, D. 2011. Thinking Fast and Slow. New York, NY: Farrar, Straus and Giroux.Search in Google Scholar

Kieras, D. E.; and Meyer, D. E. 1997. An overview of the EPIC architecture for cognition and performance with application to human-computer interaction. Human-Computer Interaction, 12: 391-438.Search in Google Scholar

Koller, D.; and Friedman, N. 2009. Probabilistic Graphical Models: Principles and Techniques. Cambridge, MA: MIT Press.Search in Google Scholar

Kopp, S.; Krenn, B.; Marsella, S.; Marshall, A. N.; Pelachaud C.; Pirker, H.; and Vilhjálmsson, H. 2006. Towards a common framework for multimodal generation: The behavior markup language. In Proceedings of the 6th International Conference on Intelligent Virtual Agents, 205-217.Search in Google Scholar

Kschischang, F. R.; Frey, B. J.; and Loeliger, H.-A. 2001. Factor graphs and the sum-product algorithm. IEEE Transactions on Information Theory. 47: 498-519.10.1109/18.910572Search in Google Scholar

Laird, J. E. 2012. The Soar Cognitive Architecture. Cambridge, MA: MIT Press.10.7551/mitpress/7688.001.0001Search in Google Scholar

Laird, J E.; Newell, A.; and Rosenbloom, P. S. 1987. Soar: An Architecture for General Intelligence. Artificial Intelligence. 33: 1-64.10.1016/0004-3702(87)90050-6Search in Google Scholar

Laird, J. E.; and Rosenbloom, P. S. 1990. Integrating execution, planning, and learning in Soar for external environments, Proceedings of the Eighth National Conference on Artificial Intelligence,1022-1029.Search in Google Scholar

Laird, J. E.; Rosenbloom, P. S.; and Newell, A. 1986. Chunking in Soar: The anatomy of a general learning mechanism. Machine Learning. 1: 11-46.10.1007/BF00116249Search in Google Scholar

Langley, P.; and Choi, D. 2006. A unified cognitive architecture for physical agents. In Proceedings of the Twenty-First AAAI Conference on Artificial Intelligence, 1469-1474.Search in Google Scholar

Langley, P.; Laird, J. E.; and Rogers, S. 2009. Cognitive architectures: Research issues and challenges. Cognitive Systems Research. 10: 141-160.10.1016/j.cogsys.2006.07.004Search in Google Scholar

Lebiere, C. 2013. Summary presentation for panel on Consensus and Outstanding Issues. AAAI 2013 Fall Symposium on Integrated Cognition.Search in Google Scholar

LeCun, Y.; Bengio, Y.; and Hinton, G. E. 2015. Deep Learning. Nature. 521: 436-444.10.1038/nature1453926017442Search in Google Scholar

Lenat, D.; and Guha, R. V. 1990. Building Large Knowledge-Based Systems: Representation and Inference in the Cyc Project. Reading, MA: Addison-Wesley.Search in Google Scholar

Madl, T.; and Franklin, S. 2012. A LIDA-based Model of the Attentional Blink. In Proceedings of the 11th International Conference on Cognitive Modeling, 283-288.Search in Google Scholar

Maes, P.; and Nardi, D. eds. 1988. Meta-Level Architectures and Reflection. Amsterdam: North Holland.Search in Google Scholar

Marr, D. 1982. Vision: A Computational Investigation into the Human Representation and Processing of Visual Information. San Francisco, CA: W. H. Freeman.Search in Google Scholar

Marsella, S.; and Gratch, J. 2009. EMA: A Process Model of Appraisal Dynamics. Journal of Cognitive Systems Research. 10: 70-90.10.1016/j.cogsys.2008.03.005Search in Google Scholar

McCallum, A.; Rohanemanesh, K.; Wick, M.; Schultz, K.; and Singh, S. 2008. FACTORIE: Efficient probabilistic programming via imperative declarations of structure, inference and learning. In Proceedings of the NIPS workshop on Probabilistic Programming.Search in Google Scholar

Meyer, D. E.; and Kieras, D. E. 1997. A computational theory of executive control processes and human multiple-task performance: Part 1. Basic Mechanisms. Psychological Review. 104: 3-65.10.1037/0033-295X.104.1.3Search in Google Scholar

Mikolov, T.; Chen, K.; Corrado, G.; and Dean, J. 2013. Efficient estimation of word representations in vector space. In Proceedings of the International Conference on Learning Representations.Search in Google Scholar

Milch, B.; Marthi, B.; Russell, S.; Sontag, D.; Ong, D. L.; and Kolobov, A. 2007. BLOG: Probabilistic models with unknown objects. In Introduction to Statistical Relational Learning eds. L. Getoor and B. Taskar. Cambridge, MA: MIT Press.Search in Google Scholar

Mnih, A.; and Kavukcuoglu, K. 2013. Learning word embeddings efficiently with noise-contrastive estimation. In Advances in Neural Information Processing Systems, 2265-2273.Search in Google Scholar

Minsky, M. 1986. The Society of Mind. New York, NY: Simon & Schuster.Search in Google Scholar

Moors, A.; Ellsworth, P.C.; Scherer, K.R.; and Frijda, N.H. 2013. Appraisal theories of emotion: State of the art and future development. Emotion Review. 5: 119-124.10.1177/1754073912468165Search in Google Scholar

Murphy, K. 2002. Dynamic Bayesian Networks: Representation, Inference and Learning. Ph.D. diss., Computer Science Division, UC Berkeley, Berkeley, Calif.Search in Google Scholar

Murphy, R. R. 2000. Introduction to AI Robotics. Cambridge, MA: MIT Press.Search in Google Scholar

Newell, A. 1990. Unified Theories of Cognition. Cambridge, MA: Harvard University Press.Search in Google Scholar

Newell, A.; Shaw, J. C.; and Simon, H. A. 1959. Report on a general problem-solving program. In Proceedings of the International Conference on Information Processing, 256-264.Search in Google Scholar

Newell, A.; Yost, G. R.; Laird, J. E.; Rosenbloom, P. S.; and Altmann, E. 1991. Formulating the problem space computational model. In CMU Computer Science: A 25th Anniversary Commemorative ed. R. F. Rashid. New York, NY: ACM Press/Addison-Wesley.Search in Google Scholar

Ng, A. Y.; and Russell, S. J. 2000. Algorithms for inverse reinforcement learning. In Proceedings of the 17th International Conference on Machine Learning, 663–670.Search in Google Scholar

Niv, Y. 2009. Reinforcement learning in the brain. The Journal of Mathematical Psychology. 53: 139-154.10.1016/j.jmp.2008.12.005Search in Google Scholar

Oaksford, M.; and Chater, N. 2007. Bayesian Rationality: The Probabilistic Approach to Human Reasoning. Oxford: Oxford University Press.10.1093/acprof:oso/9780198524496.001.0001Search in Google Scholar

O’Connor, T.; and Wong, H. Y. 2015. Emergent properties. In The Stanford Encyclopedia of Philosophy (Summer 2015 Edition), ed. E. N. Zalta.Search in Google Scholar

O’Reilly, R. C.; and Munakata, Y. 2000. Computational Explorations in Cognitive Neuroscience: Understanding the Mind by Simulating the Brain. Cambridge, MA: MIT Press.10.7551/mitpress/2014.001.0001Search in Google Scholar

Ortony, A.; Norman, D. A.; and Revelle, W. 2005. Affect and Proto-affect in effective functioning. In Who Needs Emotions? The Brain Meets the Machine : eds. J. M. Fellous and M. A. Arbib. New York, NY: Oxford University Press.10.1093/acprof:oso/9780195166194.003.0007Search in Google Scholar

Pearl, J. 1988. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. San Francisco, CA: Morgan Kaufman.10.1016/B978-0-08-051489-5.50008-4Search in Google Scholar

Pynadath, D. V.; and Marsella, S. C. 2005. PsychSim: Modeling Theory of Mind with decision-theoretic agents. In Proceedings of the 19th International Joint Conference on Artificial Intelligence, 1181-1186.Search in Google Scholar

Pynadath, D. V.; Rosenbloom, P. S.; and Marsella, S. C. 2014. Reinforcement learning for adaptive Theory of Mind in the Sigma cognitive architecture. In Proceedings of the 7th Annual Conference on Artificial General Intelligence, 143-154.Search in Google Scholar

Pynadath, D. V.; Rosenbloom, P. S.; Marsella, S. C.; and Li, L. 2013. Modeling two-player games in the Sigma graphical cognitive architecture. In Proceedings of the 6th Conference on Artificial General Intelligence, 98-108. Berlin: Springer.10.1007/978-3-642-39521-5_11Search in Google Scholar

Rosenbloom, P. S. 1982. A world-championship-level Othello program. Artificial Intelligence. 19: 279-320.10.1016/0004-3702(82)90003-0Search in Google Scholar

Rosenbloom, P. S. 2006. A cognitive odyssey: From the power law of practice to a general learning mechanism and beyond. Tutorials in Quantitative Methods for Psychology. 2: 43-51.10.20982/tqmp.02.2.p043Search in Google Scholar

Rosenbloom, P. S. 2009. Towards a new cognitive hourglass: Uniform implementation of cognitive architecture via factor graphs. In Proceedings of the 9th International Conference on Cognitive Modeling, 116-121.Search in Google Scholar

Rosenbloom, P. S. 2010. Combining procedural and declarative knowledge in a graphical architecture. In Proceedings of the 10th International Conference on Cognitive Modeling, 205-210.Search in Google Scholar

Rosenbloom, P. S. 2011a. Rethinking cognitive architecture via graphical models. Cognitive Systems Research. 12: 198-209.10.1016/j.cogsys.2010.07.006Search in Google Scholar

Rosenbloom, P. S. 2011b. Mental imagery in a graphical cognitive architecture. In Proceedings of the 2nd International Conference on Biologically Inspired Cognitive Architectures, 314-323.Search in Google Scholar

Rosenbloom, P. S. 2011c. From memory to problem solving: Mechanism reuse in a graphical cognitive architecture. In Proceedings of the 4th Conference on Artificial General Intelligence, 143-152.Search in Google Scholar

Rosenbloom, P. S. 2012a. Deconstructing reinforcement learning in Sigma. In Proceedings of the 5th Conference on Artificial General Intelligence, 262-271. Berlin: Springer.10.1007/978-3-642-35506-6_27Search in Google Scholar

Rosenbloom, P. S. 2012b. Extending mental imagery in Sigma. In Proceedings of the 5th Conference on Artificial General Intelligence, 272-281.Search in Google Scholar

Rosenbloom, P. S. 2012c. Towards a 50 msec cognitive cycle in a graphical architecture. In Proceedings of the 11th International Conference on Cognitive Modeling, 305-310.Search in Google Scholar

Rosenbloom, P. S. 2014. Deconstructing episodic learning and memory in Sigma. In Proceedings of the 36th Annual Conference of the Cognitive Science Society, 1317-1322.Search in Google Scholar

Rosenbloom, P. S. 2015. Supraarchitectural capability integration: From Soar to Sigma. In Proceedings of the 13th International Conference on Cognitive Modeling, 67-68.Search in Google Scholar

Rosenbloom, P. S.; Demski, A.; Han, T.; and Ustun, V. 2013. Learning via gradient descent in Sigma. In Proceedings of the 12th International Conference on Cognitive Modeling, 35-40.Search in Google Scholar

Rosenbloom, P. S.; Demski, A.; and Ustun, V. 2015. Efficient message computation in Sigma’s graphical architecture. Biologically Inspired Cognitive Architectures. 11: 1-9.10.1016/j.bica.2014.11.009Search in Google Scholar

Rosenbloom, P. S.; Demski, A.; and Ustun, V. 2016. Rethinking Sigma’s graphical architecture while extending it to neural networks. In Proceedings of the 9th Conference on Artificial General Intelligence.10.1007/978-3-319-41649-6_9Search in Google Scholar

Rosenbloom, P. S.; Gratch, J.; and Ustun, V. 2015. Towards emotion in Sigma: From Appraisal to Attention. In Proceedings of the 8th Conference on Artificial General Intelligence, 142-151.Search in Google Scholar

Rosenbloom, P. S.; Laird, J. E.; and Newell, A. 1988. Meta-levels in Soar. In Meta-Level Architectures and Reflection eds. P. Maes and D. Nardi. Amsterdam, Netherlands: North Holland.Search in Google Scholar

Rosenbloom, P. S.; Lee, S.; and Unruh, A. 1990. Responding to impasses in memory-driven behavior: A framework for planning, Proceedings of the Workshop on Innovative Approaches to Planning, Scheduling, and Control, 181-191.Search in Google Scholar

Rosenbloom, P. S.; Laird, J. E.; and Newell, A. 1987. Knowledge level learning in Soar. In Proceedings of Sixth National Conference on Artificial Intelligence, 499-504.Search in Google Scholar

Rosenbloom, P. S.; Laird, J. E.; and Newell, A. eds. 1993. The Soar Papers: Research on Integrated Intelligence. Cambridge, MA: MIT Press.Search in Google Scholar

Rumelhart, D. E.; Hinton, G. E.; and Williams, R. J. 1986. Learning representations by back-propagating errors. Nature. 323: 533-536.10.1038/323533a0Search in Google Scholar

Russell, S.; Binder, J.; Koller, D.; and Kanazawa, K. 1995. Local learning in probabilistic networks with hidden variables. In Proceedings of the 14th International Joint Conference on AI, 1146-1152.Search in Google Scholar

Schneider, W.; and Shiffrin, R. M. 1977. Controlled and automatic human information processing: I. Detection, search, and attention. Psychological Review. 84: 1-66.10.1037/0033-295X.84.1.1Search in Google Scholar

Shapiro, A. 2011. Building a character animation system. In Proceedings of the 4th International Conference on Motion in Games, 98-109.Search in Google Scholar

Simon, H. A. 1956. Rational choice and the structure of the environment. Psychological Review. 63: 129–138.10.1037/h004276913310708Search in Google Scholar

Singla, P.; and Domingos, P. 2008. Lifted first-order belief propagation. In Proceedings of the Twenty-Third AAAI Conference on Artificial Intelligence, 1094-1099.Search in Google Scholar

Sun, R. 2006. The CLARION cognitive architecture: Extending cognitive modeling to social simulation In Cognition and Multi-Agent Interaction ed. R. Sun. New York, NY: Cambridge University Press.10.1017/CBO9780511610721.005Search in Google Scholar

Sun, R.; and Wilson, N. 2010. Motivational processes within the perception-action cycle. Perception-Action Cycle: Models, Architectures, and Hardware. New York, NY: Springer.10.1007/978-1-4419-1452-1_14Search in Google Scholar

Sutton, R. S.; and Barto, A. G. 1998. Reinforcement Learning: An Introduction. Cambridge, MA: MIT Press.10.1109/TNN.1998.712192Search in Google Scholar

Swartout, W. 2010. Lessons learned from virtual humans. AI Magazine. 31: 9-20.10.1609/aimag.v31i1.2284Search in Google Scholar

Tambe, M.; and Rosenbloom, P. S. 1994. Investigating production system representations for non-combinatorial match. Artificial Intelligence. 68: 155-199.10.1016/0004-3702(94)90097-3Search in Google Scholar

Turney, P. D.; and Pantel, P. 2010. From frequency to meaning: Vector space models of semantics. Journal of Artificial Intelligence Research. 37: 141-188.10.1613/jair.2934Search in Google Scholar

Ustun, V; and Rosenbloom, P. S. 2015. Towards adaptive, interactive virtual humans in Sigma. In Proceedings of the 15th International Conference on Intelligent Virtual Agents, 98-108.Search in Google Scholar

Ustun, V.; Rosenbloom, P. S.; Kim, J.; and Li, L. 2015. Building high fidelity human behavior models in the Sigma cognitive architecture. In Proceedings of the 2015 Winter Simulation Conference, 3124-3125.Search in Google Scholar

Ustun, V.; Rosenbloom, P. S.; Sagae, K.; and Demski, A. 2014. Distributed vector representations of words in the Sigma cognitive architecture. In Proceedings of the 7th Annual Conference on Artificial General Intelligence, 196-207.Search in Google Scholar

Veloso, M. M.; and Carbonell, J. G. 1993. Derivational analogy in Prodigy: Automating case acquisition, storage, and utilization. Machine Learning. 10: 249–278.10.1007/978-1-4615-3228-6_3Search in Google Scholar

Veness, J.; Ng, K. S.; Hutter, M.; Uther, W.; Silver, D. 2011. A Monte-Carlo AIXI approximation. Journal of Artificial Intelligence Research. 40: 95-14210.1613/jair.3125Search in Google Scholar

Vere, S. and Bickmore, T. 1990. A Basic Agent. Computational Intelligence. 6: 41-60.10.1111/j.1467-8640.1990.tb00128.xSearch in Google Scholar

Wang, P. 2007. The logic of intelligence. In Artificial General Intelligence eds. B. Goertzel and C. Pennachin. New York, NY: Springer.Search in Google Scholar

Whiten, A. ed. 1991. Natural Theories of Mind. Oxford: Basil Blackwell.Search in Google Scholar

eISSN:
1946-0163
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
2 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Informatik, Künstliche Intelligenz