Uneingeschränkter Zugang

Dendrochronological dating as the basis for developing a landslide hazard map – An example from the Western Carpathians, Poland


Zitieren

Antronico L, Borrelli L, Coscarelli R, Pasqua AA, Petrucci O and Gullà G, 2013. Slope movements induced by rainfalls damaging an urban area: the Catanzaro case study (Calabria, southern Italy). Landslides 10(6): 801–814, 10.1007/s10346-013-0431-3.AntronicoLBorrelliLCoscarelliRPasquaAAPetrucciOGullàG2013Slope movements induced by rainfalls damaging an urban area: the Catanzaro case study (Calabria, southern Italy)Landslides10680181410.1007/s10346-013-0431-3Open DOISearch in Google Scholar

ArcGIS Desktop, 2017.Release 10.5. ESRI, Redlands, CA.ArcGIS Desktop2017Release 10.5ESRIRedlands, CASearch in Google Scholar

ArcGIS Help, 2017. Comparing interpolation methods. Available at: http://desktop.arcgis.com/en/arcmap/latest/tools/3d-analyst-toolbox/comparing-interpolation-methods.htmArcGIS Help2017Comparing interpolation methods. Available athttp://desktop.arcgis.com/en/arcmap/latest/tools/3d-analyst-toolbox/comparing-interpolation-methods.htmSearch in Google Scholar

Béjar-Pizarro M, Notti D, Mateos RM, Ezquerro P, Centolanza G, Herrera G, Bru G, Sanabria M, Solari L, Duro J and Fernández J, 2017. Mapping Vulnerable Urban Areas Affected by Slow-Moving Landslides Using Sentinel-1 InSAR Data. Remote Sensing 9(9): 876, 10.3390/rs9090876.Béjar-PizarroMNottiDMateosRMEzquerroPCentolanzaGHerreraGBruGSanabriaMSolariLDuroJFernándezJ2017Mapping Vulnerable Urban Areas Affected by Slow-Moving Landslides Using Sentinel-1 InSAR DataRemote Sensing9987610.3390/rs9090876Open DOISearch in Google Scholar

Bollschweiler M, Stoffel M, Ehmisch M and Monbaron M, 2007. Reconstructing spatio-temporal patterns of debris-flow activity using dendrogeomorphological methods. Geomorphology 87(4): 337–351, 10.1016/j.geomorph.2006.10.002.BollschweilerMStoffelMEhmischMMonbaronM2007Reconstructing spatio-temporal patterns of debris-flow activity using dendrogeomorphological methodsGeomorphology87433735110.1016/j.geomorph.2006.10.002Open DOISearch in Google Scholar

Bovenga F, Pasquariello G, Pellicani R, Refice A and Spilotro G, 2017. Landslide monitoring for risk mitigation by using corner reflector and satellite SAR interferometry: The large landslide of Carlantino (Italy). Catena 151: 49–62, 10.1016/j.catena.2016.12.006.BovengaFPasquarielloGPellicaniRReficeASpilotroG2017Landslide monitoring for risk mitigation by using corner reflector and satellite SAR interferometry: The large landslide of Carlantino (Italy)Catena151496210.1016/j.catena.2016.12.006Open DOISearch in Google Scholar

Brabb EE, Pampeyan EH, Bonilla MG, 1972. Landslide susceptibility in San Mateo County. Miscellaneous Field Studies Map. California. U.S. Geological Survey, Map MF-360, Scale 1:62,500.BrabbEEPampeyanEHBonillaMG1972Landslide susceptibility in San Mateo CountyMiscellaneous Field Studies Map.California. U.SGeological Survey, Map MF-360, Scale162,500Search in Google Scholar

Butler DR, 1987. Teaching general principles and applications of dendrogeomorphology. Journal of Geological Education 35(2): 64–70, 10.5408/0022-1368-35.2.64.ButlerDR1987Teaching general principles and applications of dendrogeomorphologyJournal of Geological Education352647010.5408/0022-1368-35.2.64Open DOISearch in Google Scholar

Carrara A, Guzzetti F, Cardinali M and Reichenbach P, 1999. Use of GIS Technology in the Prediction and Monitoring of Landslide Hazard. Natural Hazards 20(2–3): 117–135, 10.1023/A:1008097111310.CarraraAGuzzettiFCardinaliMReichenbachP1999Use of GIS Technology in the Prediction and Monitoring of Landslide HazardNatural Hazards202-311713510.1023/A:1008097111310Open DOISearch in Google Scholar

Carrara A, Crosta G and Frattini P, 2003. Geomorphological and historical data in assessing landslide hazard. Earth Surface Processes and Landforms 28(10): 1125–1142, 10.1002/esp.545.CarraraACrostaGFrattiniP2003Geomorphological and historical data in assessing landslide hazardEarth Surface Processes and Landforms28101125114210.1002/esp.545Open DOISearch in Google Scholar

Caruso C and Quarta F, 1998. Interpolation methods comparison. Computers & Mathematics with Applications 35(12): 109–126, 10.1016/S0898-1221(98)00101-1.CarusoCQuartaF1998Interpolation methods comparisonComputers & Mathematics with Applications351210912610.1016/S0898-1221(98)00101-1Open DOISearch in Google Scholar

Catani F, Casagli N, Ermini L, Righini G and Menduni G, 2005. Landslide hazard and risk mapping at catchment scale in the Arno River basin. Landslides 2(4): 329–342, 10.1007/s10346-005-0021-0.CataniFCasagliNErminiLRighiniGMenduniG2005Landslide hazard and risk mapping at catchment scale in the Arno River basinLandslides2432934210.1007/s10346-005-0021-0Open DOISearch in Google Scholar

Central Office of Geodesy and Cartography (CODGiK), 2015. Digital elevation data, Available at: http://www.codgik.gov.pl/index.php/zasob/numeryczne-dane-wysokosciowe.htmlCentral Office of Geodesy and Cartography (CODGiK)2015Digital elevation data, Available athttp://www.codgik.gov.pl/index.php/zasob/numeryczne-dane-wysokosciowe.htmlSearch in Google Scholar

Chase RB, Chase KE, Kehew AE and Montgomery WW, 2001. Determining the kinematics of slope movements using low-cost monitoring and cross-section balancing. Environmental and Engineering Geoscience 7(2): 193–203, 10.2113/gseegeosci.7.2.193.ChaseRBChaseKEKehewAEMontgomeryWW2001Determining the kinematics of slope movements using low-cost monitoring and cross-section balancingEnvironmental and Engineering Geoscience7219320310.2113/gseegeosci.7.2.193Open DOISearch in Google Scholar

Chen H and Petley DN, 2005. The impact of landslides and debris flows triggered by Typhoon Mindulle in Taiwan. Quarterly Journal of Engineering Geology and Hydrogeology 38(3): 301–304, 10.1144/1470-9236/04-077.ChenHPetleyDN2005The impact of landslides and debris flows triggered by Typhoon Mindulle in TaiwanQuarterly Journal of Engineering Geology and Hydrogeology38330130410.1144/1470-9236/04-077Open DOISearch in Google Scholar

Childs C, 2004. Interpolating Surfaces in ArcGIS Spatial Analyst [online]. ArcUser Online July – September 2004. Available at: https://www.esri.com/news/arcuser/0704/files/interpolating.pdf – 30.10.2015.ChildsC2004Interpolating Surfaces in ArcGIS Spatial Analyst [online]ArcUser Online July – September 2004. Available athttps://www.esri.com/news/arcuser/0704/files/interpolating.pdf– 30.10.2015Search in Google Scholar

Colesanti C and Wasowski J, 2006. Investigating landslides with spaceborne Synthetic Aperture Radar (SAR) interferometry. Engineering Geology 88(3–4): 173–199, 10.1016/j.enggeo.2006.09.013.ColesantiCWasowskiJ2006Investigating landslides with spaceborne Synthetic Aperture Radar (SAR) interferometryEngineering Geology883–417319910.1016/j.enggeo.2006.09.013Open DOISearch in Google Scholar

Corominas J and Moya J, 2010. Contribution of dendrochronology to the determination of magnitude-frequency relationships for landslides. Geomorphology 124: 137–149, 10.1016/j.geomorph.2010.09.001.CorominasJMoyaJ2010Contribution of dendrochronology to the determination of magnitude-frequency relationships for landslidesGeomorphology12413714910.1016/j.geomorph.2010.09.001Open DOISearch in Google Scholar

Corona C, Lopez Saez J and Stoffel M, 2014. Defining optimal sample size, sampling design and thresholds for dendrogeomorphic landslide sampling. Quaternary Geochronology 22: 72–84, 10.1016/j.quageo.2014.02.006.CoronaCLopez SaezJStoffelM2014Defining optimal sample size, sampling design and thresholds for dendrogeomorphic landslide samplingQuaternary Geochronology22728410.1016/j.quageo.2014.02.006Open DOISearch in Google Scholar

Crawford MH, Crowley K, Potter SH, Saunders WSA and Johnston D, 2018. Risk modelling as a tool to support natural hazard risk management in New Zealand local government. International Journal of Disaster Risk Reduction 28: 610–619, 10.1016/j.ijdrr.2018.01.011.CrawfordMHCrowleyKPotterSHSaundersWSAJohnstonD2018Risk modelling as a tool to support natural hazard risk management in New Zealand local governmentInternational Journal of Disaster Risk Reduction2861061910.1016/j.ijdrr.2018.01.011Open DOISearch in Google Scholar

Demoulin A and Chung CJ, 2007. Mapping landslide susceptibility from small datasets: A case study in the Pays de Herve (E Belgium). Geomorphology 89(3): 391–404, 10.1016/j.geomorph.2007.01.008.DemoulinAChungCJ2007Mapping landslide susceptibility from small datasets: A case study in the Pays de Herve (E Belgium)Geomorphology89339140410.1016/j.geomorph.2007.01.008Open DOISearch in Google Scholar

Di Piazza A, Lo Conti F, Noto LV, Viola F and La Loggia G, 2011. Comparative analysis of different techniques for spatial interpolation of rainfall data to create a serially complete monthly time series of precipitation for Sicily, Italy. International Journal of Applied Earth Observation and Geoinformation 13(3): 396–408, 10.1016/j.jag.2011.01.005.Di PiazzaALo ContiFNotoLVViolaFLa LoggiaG2011Comparative analysis of different techniques for spatial interpolation of rainfall data to create a serially complete monthly time series of precipitation for Sicily, ItalyInternational Journal of Applied Earth Observation and Geoinformation13339640810.1016/j.jag.2011.01.005Open DOISearch in Google Scholar

Evans NC, Huang SW and King JP, 1999. The natural terrain landslide study phases I and II. GEO Report No. 73, Geotechnical Engineering Office, Hong Kong SAR Government.EvansNCHuangSWKingJP1999The natural terrain landslide study I, IIGEO Report No. 73Geotechnical Engineering OfficeHong Kong SAR GovernmentSearch in Google Scholar

ESRI ASCII Grid, 2014. Surveyor General of Poland, License no DIO.DFT.DSI.7211.18428.2014_PL_N for University of Silesia.ESRI ASCII Grid2014Surveyor General of PolandLicense no DIO.DFT.DSI.7211.18428.2014_PL_N for University of SilesiaSearch in Google Scholar

Fall M, Azzam R and Noubactep C, 2006. A multi-method approach to study the stability of natural slopes and landslide susceptibility mapping. Engineering Geology 82(4): 241–263, 10.1016/j.enggeo.2005.11.007.FallMAzzamRNoubactepC2006A multi-method approach to study the stability of natural slopes and landslide susceptibility mappingEngineering Geology82424126310.1016/j.enggeo.2005.11.007Open DOISearch in Google Scholar

Gärtner H, Stoffel M, Lièvre I, Conus D, Grichting M and Monbaron M, 2003. Debris-flow frequency derived from tree-ring analyses and geomorphic mapping, Valais, Switzerland. In: Rickenmann D and Chen Ch, eds., Debris Flow Hazards Mitigation: Mechanics, Prediction, and Assessment 1: 207–217.GärtnerHStoffelMLièvreIConusDGrichtingMMonbaronM2003Debris-flow frequency derived from tree-ring analyses and geomorphic mapping, Valais, SwitzerlandRickenmannDChenChDebris Flow Hazards Mitigation: Mechanics, Prediction, and Assessment1207217Search in Google Scholar

Gärtner H and Heinrich I, 2013. Dendrogeomorphology. In: Elias SA, eds., The Encyclopedia of Quaternary Science. Elsevier, Amsterdam, 2: 91–103.GärtnerHHeinrichI2013DendrogeomorphologyEliasSAThe Encyclopedia of Quaternary Science.ElsevierAmsterdam29110310.1016/B978-0-444-53643-3.00356-3Search in Google Scholar

Gong G, Mattevada S and O’Bryant SE, 2014. Comparison of the accuracy of kriging and IDW interpolations in estimating ground water arsenic concentrations in Texas. Environmental Research 130: 59–69, 10.1016/j.envres.2013.12.005.GongGMattevadaSO’BryantSE2014Comparison of the accuracy of kriging and IDW interpolations in estimating ground water arsenic concentrations in TexasEnvironmental Research130596910.1016/j.envres.2013.12.00524559533Open DOISearch in Google Scholar

Guida D, Pelfini M and Santilli M, 2008. Geomorphological and dendrochronological analyses of a complex landslide in the Southern Apennines. Geografiska Annaler. Series A, Physical Geography 90(3): 211–226, 10.1111/j.1468-0459.2008.340.x.GuidaDPelfiniMSantilliM2008Geomorphological and dendrochronological analyses of a complex landslide in the Southern ApenninesGeografiska Annaler. Series A, Physical Geography90321122610.1111/j.1468-0459.2008.340.xOpen DOISearch in Google Scholar

Guzzetti F, Cardinali M, Reichenbach P and Carrara A, 2000. Comparing Landslide Maps: A Case Study in the Upper Tiber River Basin, Central Italy. Environmental Management 25(3): 247–263, 10.1007/s002679910020.GuzzettiFCardinaliMReichenbachPCarraraA2000Comparing Landslide Maps: A Case Study in the Upper Tiber River Basin, Central ItalyEnvironmental Management25324726310.1007/s002679910020Open DOISearch in Google Scholar

Guzzetti F, Ardizzone F, Cardinali M, Rossi M and Valigi D, 2009. Landslide volumes and landslide mobilization rates in Umbria, central Italy. Earth and Planetary Science Letters 279: 222–229, 10.1016/j.epsl.2009.01.005.GuzzettiFArdizzoneFCardinaliMRossiMValigiD2009Landslide volumes and landslide mobilization rates in Umbria, central ItalyEarth and Planetary Science Letters27922222910.1016/j.epsl.2009.01.005Open DOISearch in Google Scholar

Haneberg WC, Cole WF and Kasali G, 2009. High-resolution lidar-based landslide hazard mapping and modeling, UCSF Parnassus Campus, San Francisco, USA. Bulletin of Engineering Geology and the Environment 68: 263–276, 10.1007/s10064-009-0204-3.HanebergWCColeWFKasaliG2009High-resolution lidar-based landslide hazard mapping and modeling, UCSF Parnassus Campus, San Francisco, USABulletin of Engineering Geology and the Environment6826327610.1007/s10064-009-0204-3Open DOISearch in Google Scholar

Hess M, 1965. Piętra klimatyczne w polskich Karpatach Zachodnich (Climatic zones in the Polish Western Carpathians). Zeszyty Naukowe Uniwersytetu Jagiellońskiego 155, Prace Geograficzne 11: 1–268 (in Polish).HessM1965Piętra klimatyczne w polskich Karpatach Zachodnich (Climatic zones in the Polish Western Carpathians). Zeszyty Naukowe Uniwersytetu Jagiellońskiego 155Prace Geograficzne111268in PolishSearch in Google Scholar

Hutchinson MF, 1989. A new procedure for gridding elevation and stream line data with automatic removal of spurious pits. Journal of Hydrology 106(3–4): 211–232, 10.1016/0022-1694(89)90073-5.HutchinsonMF1989A new procedure for gridding elevation and stream line data with automatic removal of spurious pitsJournal of Hydrology1063–421123210.1016/0022-1694(89)90073-5Open DOISearch in Google Scholar

Hutchinson MF, 2011. ANUDEM Version 5.3. User Guide. Fenner School of Environment and Society, Australian National University. 25 pp.HutchinsonMF2011ANUDEM Version 5.3. User GuideFenner School of Environment and Society, Australian National University.25Search in Google Scholar

Innes JL, 1983. Lichenometric dating of debris-flow deposits in the Scottish Highlands. Earth Surface Processes and Landforms 8: 579–588, 10.1002/esp.3290080609.InnesJL1983Lichenometric dating of debris-flow deposits in the Scottish HighlandsEarth Surface Processes and Landforms857958810.1002/esp.3290080609Open DOISearch in Google Scholar

Ives JD and Bovis MJ, 1978. Natural Hazards Maps for Land-Use Planning, San Juan Mountains, Colorado, U.S.A. Arctic and Alpine Research 10(2): 185–212, 10.2307/1550752.IvesJDBovisMJ1978Natural Hazards Maps for Land-Use Planning, San Juan Mountains, Colorado, U.S.AArctic and Alpine Research10218521210.2307/1550752Open DOISearch in Google Scholar

Journault J, Macciotta R, Hendry MT, Charbonneau F, Huntley D and Bobrowsky PT, 2018. Measuring displacements of the Thompson River valley landslides, south of Ashcroft, BC, Canada, using satellite InSAR. Landslides 15(4): 621–636, 10.1007/s10346-017-0900-1.JournaultJMacciottaRHendryMTCharbonneauFHuntleyDBobrowskyPT2018Measuring displacements of the Thompson River valley landslides, south of Ashcroft, BC, Canada, using satellite InSARLandslides15462163610.1007/s10346-017-0900-1Open DOISearch in Google Scholar

Lebourg T, Hernandez M, Zerathe S, El Bedoiu S, Jomard H and Fresia B, 2014. Landslides triggered factors analysed by time lapse electrical survey and multidimensional statistical approach. Engineering Geology 114(3–4): 238–250, 10.1016/j.enggeo.2010.05.001.LebourgTHernandezMZeratheSEl BedoiuSJomardHFresiaB2014Landslides triggered factors analysed by time lapse electrical survey and multidimensional statistical approachEngineering Geology1143–423825010.1016/j.enggeo.2010.05.001Open DOISearch in Google Scholar

Lee MJ, Park I, Won JS and Lee S, 2016. Landslide hazard mapping considering rainfall probability in Inje, Korea. Geomatics, Natural Hazards and Risk 7(1): 424–446, 10.1080/19475705.2014.931307.LeeMJParkIWonJSLeeS2016Landslide hazard mapping considering rainfall probability in Inje, KoreaGeomatics, Natural Hazards and Risk7142444610.1080/19475705.2014.931307Open DOISearch in Google Scholar

Li Z, 1988. On the measure of digital terrain model accuracy. The Photogrammetric Record 12(72): 873–877, 10.1111/j.1477-9730.1988.tb00636.x.LiZ1988On the measure of digital terrain model accuracyThe Photogrammetric Record127287387710.1111/j.1477-9730.1988.tb00636.xOpen DOISearch in Google Scholar

Li J and Heap AD, 2014. Spatial interpolation methods applied in the environmental sciences: A review. Environmental Modelling & Software 53: 173–189, 10.1016/j.envsoft.2013.12.008.LiJHeapAD2014Spatial interpolation methods applied in the environmental sciences: A reviewEnvironmental Modelling & Software5317318910.1016/j.envsoft.2013.12.008Open DOISearch in Google Scholar

Lopez Saez J, Corona C, Stoffel M, Schoeneich P and Berger F, 2012. Probability maps of landslide reactivation derived from tree-ring records: Pra Bellon landslide, southern French Alps. Geomorphology 138(1): 189–202, 10.1016/j.geomorph.2011.08.034.Lopez SaezJCoronaCStoffelMSchoeneichPBergerF2012Probability maps of landslide reactivation derived from tree-ring records: Pra Bellon landslide, southern French AlpsGeomorphology138118920210.1016/j.geomorph.2011.08.034Open DOISearch in Google Scholar

Mahmood I, Qureshi SN, Tariq S, Atique L and Iqbal MF, 2015. Analysis of Landslides Triggered by October 2005, Kashmir Earthquake. PLOS Currents Disasters. 2015 Aug 26. Edition 1, 10.1371/currents.dis.0bc3ebc5b8adf5c7fe9fd3d702d44a99.MahmoodIQureshiSNTariqSAtiqueLIqbalMF2015Analysis of Landslides Triggered by October 2005, Kashmir EarthquakePLOS Currents Disasters.2015Aug 26110.1371/currents.dis.0bc3ebc5b8adf5c7fe9fd3d702d44a99455644126366324Open DOISearch in Google Scholar

Mahr T and Malgot J, 1978. Zoning maps for regional and urban development based on slope stability. In: Proceedings of the Third International Congress of the I.A.E.G. (Madrid), Spain 1(1): 124–137.MahrTMalgotJ1978Zoning maps for regional and urban development based on slope stabilityProceedings of the Third International Congress of the I.A.E.G.MadridSpain11124137Search in Google Scholar

Malik I and Owczarek P, 2009. Dendrochronological records of debris flow and avalanche activity in a mid-mountain forest zone (Eastern Sudetes—Central Europe). Geochronometria 34(1): 57–66, 10.2478/v10003-009-0011-7.MalikIOwczarekP2009Dendrochronological records of debris flow and avalanche activity in a mid-mountain forest zone (Eastern Sudetes—Central Europe)Geochronometria341576610.2478/v10003-009-0011-7Open DOISearch in Google Scholar

Malik I and Wistuba M, 2012. Dendrochronological methods for reconstructing mass movements – An example of landslide activity analysis using tree-ring eccentricity. Geochronometria 39(3): 180–196, 10.2478/s13386-012-0005-5.MalikIWistubaM2012Dendrochronological methods for reconstructing mass movements – An example of landslide activity analysis using tree-ring eccentricityGeochronometria39318019610.2478/s13386-012-0005-5Open DOISearch in Google Scholar

Malik I, Wistuba M, Migoń P and Fajer M, 2016. Activity of Slow-Moving Landslides Recorded in Eccentric Tree Rings of Norway Spruce Trees (Picea Abies Karst.) — An Example from the Kamienne MTS. (Sudetes MTS., Central Europe). Geochronometria 43(1): 24–37, 10.1515/geochr-2015-0028.MalikIWistubaMMigońPFajerM2016Activity of Slow-Moving Landslides Recorded in Eccentric Tree Rings of Norway Spruce Trees (Picea Abies Karst.) — An Example from the Kamienne MTS. (Sudetes MTS., Central Europe)Geochronometria431243710.1515/geochr-2015-0028Open DOISearch in Google Scholar

Malik I, Wistuba M, Tie Y, Owczarek P, Woskowicz-Ślęzak B and Łuszczyńska K, 2017. Mass movements of differing magnitude and frequency in a developing high-mountain area of the Moxi basin, Hengduan Mts, China – A hazard assessment. Applied Geography 87: 54–65, 10.1016/j.apgeog.2017.08.003.MalikIWistubaMTieYOwczarekPWoskowicz-ŚlęzakBŁuszczyńskaK2017Mass movements of differing magnitude and frequency in a developing high-mountain area of the Moxi basin, Hengduan Mts, China – A hazard assessmentApplied Geography87546510.1016/j.apgeog.2017.08.003Open DOISearch in Google Scholar

Micu M and Bălteanu D, 2013. A deep-seated landslide dam in the Siriu Reservoir (Curvature Carpathians, Romania). Landslides 10 (3): 323–329, 10.1007/s10346-013-0382-8.MicuMBălteanuD2013A deep-seated landslide dam in the Siriu Reservoir (Curvature Carpathians, Romania)Landslides10332332910.1007/s10346-013-0382-8Open DOISearch in Google Scholar

Migoń P, Pánek T, Malik I, Hrádecký J, Owczarek P and Silhán K, 2010. Complex landslide terrain in the Kamienne Mountains, middle Sudetes, SW Poland. Geomorphology 124(3–4): 200–214, 10.1016/j.geomorph.2010.09.024.MigońPPánekTMalikIHrádeckýJOwczarekPSilhánK2010Complex landslide terrain in the Kamienne Mountains, middle Sudetes, SW PolandGeomorphology1243–420021410.1016/j.geomorph.2010.09.024Open DOISearch in Google Scholar

Murillo-García FG, Alcántara-Ayala I, Ardizzone F, Cardinali M, Fiourucci F and Guzzetti F, 2015. Satellite stereoscopic pair images of very high resolution: a step forward for the development of landslide inventories. Landslides 12(2): 277–291, 10.1007/s10346-014-0473-1.Murillo-GarcíaFGAlcántara-AyalaIArdizzoneFCardinaliMFiourucciFGuzzettiF2015Satellite stereoscopic pair images of very high resolution: a step forward for the development of landslide inventoriesLandslides12227729110.1007/s10346-014-0473-1Open DOISearch in Google Scholar

Netto ALC, Sato AM, Avelar A de S, Vianna LGG, Araújo IS, Ferreira DLC, Lima PH, Silva APA and Silva RP, 2013. January 2011: The Extreme Landslide Disaster in Brazil. In: Margottini C, Canuti P and Sassa K, eds., Landslide Science and Practice. Springer, Berlin, Heidelberg.NettoALCSatoAMAvelarAdeSViannaLGGAraújoISFerreiraDLCLimaPHSilvaAPASilvaRP2013January 2011: The Extreme Landslide Disaster in BrazilMargottiniCCanutiPSassaKLandslide Science and Practice.SpringerBerlin, Heidelberg10.1007/978-3-642-31319-6_51Search in Google Scholar

Papciak T, Malik I, Krzemień K, Wistuba M, Gorczyca E, Wrońska-Wałach D and Sobucki M, 2015. Precipitation as a factor triggering landslide activity in the Kamień massif (Beskid Niski Mts, Western Carpathians). Bulletin of Geography. Physical Geography Series 8: 5–17, 10.1515/bgeo-2015-0001.PapciakTMalikIKrzemieńKWistubaMGorczycaEWrońska-WałachDSobuckiM2015Precipitation as a factor triggering landslide activity in the Kamień massif (Beskid Niski Mts, Western Carpathians)Bulletin of Geography. Physical Geography Series851710.1515/bgeo-2015-0001Open DOISearch in Google Scholar

Paudel PP, Omura H, Kubota T and Morita K, 2003. Landslide damage and disaster management system in Nepal. Disaster Prevention and Management 12(5): 413–419, 10.1108/09653560310507235.PaudelPPOmuraHKubotaTMoritaK2003Landslide damage and disaster management system in NepalDisaster Prevention and Management12541341910.1108/09653560310507235Open DOISearch in Google Scholar

Perret S, Stoffel M and Kienholz H, 2006. Spatial and temporal rockfall activity in a forest stand in the Swiss Prealps – A dendrogeomorphological case study. Geomorphology 74(1–4): 219–231, 10.1016/j.geomorph.2005.08.009.PerretSStoffelMKienholzH2006Spatial and temporal rockfall activity in a forest stand in the Swiss Prealps – A dendrogeomorphological case studyGeomorphology741–421923110.1016/j.geomorph.2005.08.009Open DOISearch in Google Scholar

Perrone A, Lapenna V and Piscitelli S, 2014. Electrical resistivity tomography technique for landslide investigation: A review. Earth-Science Reviews 135: 65–82, 10.1016/j.earscirev.2014.04.002.PerroneALapennaVPiscitelliS2014Electrical resistivity tomography technique for landslide investigation: A reviewEarth-Science Reviews135658210.1016/j.earscirev.2014.04.002Open DOISearch in Google Scholar

Petley DN, Hearn GJ, Hart A, Rosser NJ, Dunning SA, Oven K and Mitchell WA, 2007. Trends in landslide occurrence in Nepal. Natural Hazards 43(1): 23–44, 10.1007/s11069-006-9100-3.PetleyDNHearnGJHartARosserNJDunningSAOvenKMitchellWA2007Trends in landslide occurrence in NepalNatural Hazards431234410.1007/s11069-006-9100-3Open DOISearch in Google Scholar

Petley DN, 2010. On the impact of climate change and population growth on the occurrence of fatal landslides in South, East and SE Asia. Quarterly Journal of Engineering Geology and Hydrogeology 43: 487–496, 10.1144/1470–9236/09–001.PetleyDN2010On the impact of climate change and population growth on the occurrence of fatal landslides in South, East and SE AsiaQuarterly Journal of Engineering Geology and Hydrogeology4348749610.1144/1470–9236/09–001Open DOISearch in Google Scholar

Piegari E, Cataudella V, Di Maio R, Nicodemi M, Soldovieri MG, 2009. Electrical resistivity tomography and statistical analysis in landslide modelling: A conceptual approach. Journal of Applied Geophysics 68(2): 151–158, 10.1016/jjappgeo.2008.10.014.PiegariECataudellaVDi MaioRNicodemiMSoldovieriMG2009Electrical resistivity tomography and statistical analysis in landslide modelling: A conceptual approachJournal of Applied Geophysics68215115810.1016/jjappgeo.2008.10.014Open DOISearch in Google Scholar

Pham BT, Bui DT and Prakash I, 2018. Application of Classification and Regression Trees for Spatial Prediction of Rainfall-Induced Shallow Landslides in the Uttarakhand Area (India) Using GIS. In: Mal S, Singh R and Huggel C, eds., Climate Change, Extreme Events and Disaster Risk Reduction. Sustainable Development Goals Series. Springer, Cham, 1–12, 10.1007/978-3-319-56469-211.PhamBTBuiDTPrakashI2018Application of Classification and Regression Trees for Spatial Prediction of Rainfall-Induced Shallow Landslides in the Uttarakhand Area (India) Using GISMalSSinghRHuggelCClimate Change, Extreme Events and Disaster Risk Reduction.Sustainable Development Goals Series. SpringerCham11210.1007/978-3-319-56469-211Open DOISearch in Google Scholar

Qui J, Wang X, He S, Liu H, Lai J and Wang L, 2017. The catastrophic landside in Maoxian County, Sichuan, SW China, on June 24, 2017. Natural Hazards 89(3): 1485–1493, 10.1007/s11069-018-3241-z.QuiJWangXHeSLiuHLaiJWangL2017The catastrophic landside in Maoxian County, Sichuan, SW China, on June 24, 2017Natural Hazards8931485149310.1007/s11069-018-3241-zOpen DOISearch in Google Scholar

Riedel B and Walther A, 2008. InSAR processing for the recognition of landslides. Advances in Geosciences 14: 189–194, 10.5194/adgeo-14-189-2008.RiedelBWaltherA2008InSAR processing for the recognition of landslidesAdvances in Geosciences1418919410.5194/adgeo-14-189-2008Open DOISearch in Google Scholar

Roback K, Clark MK, West AJ, Zekkos D, Li G, Gallen SF, Chamlagain D and Godt JW, 2018. The size, distribution, and mobility of landslides caused by the 2015 Mw7.8 Gorkha earthquake, Nepal. Geomorphology 301: 121–138, 10.1016/j.geomorph.2017.01.030.RobackKClarkMKWestAJZekkosDLiGGallenSFCham-lagainDGodtJW2018The size, distribution, and mobility of landslides caused by the 2015 Mw7.8 Gorkha earthquakeNepal. Geomorphology30112113810.1016/j.geomorph.2017.01.030Open DOISearch in Google Scholar

Rybář J, 1999. Slope movements inducted by torrential rains in the region of Carpathians flysch (in Czech). Proc. I. Conf. Geology and Environment. Bratislava, 24–25 January 2001: 77–78.RybářJ1999Slope movements inducted by torrential rains in the region of Carpathians flysch (in Czech)Proc. I. Conf. Geology and Environment. Bratislava24–25 January20017778Search in Google Scholar

Sandić C, Abolmasov B, Marjanović M, Begović P and Jolović B, 2017. Landslide Disaster and Relief Activities: A Case Study of Urban Area of Doboj City. In: Mikoš M, Arbanas Ž, Yin Y and Sassa K, eds., Advancing Culture of Living with Landslides. WLF 2017, Springer, Cham, 383–393, 10.1007/978-3-319-53487-9_45.SandićCAbolmasovBMarjanovićMBegovićPJolovićB2017Landslide Disaster and Relief Activities: A Case Study of Urban Area of Doboj CityMikošMArbanasŽYinYSassaKAdvancing Culture of Living with Landslides.WLF 2017, SpringerCham38339310.1007/978-3-319-53487-9_45Open DOISearch in Google Scholar

Schlögel R, Malet JP, Reichenbach P, Remaître A and Doubre C, 2015. Analysis of a landslide multi-date inventory in a complex mountain landscape: the Ubaye valley case study. Natural Hazards and Earth System Sciences 15(10): 2369–2389, 10.5194/nhess-15-2369-2015.SchlögelRMaletJPReichenbachPRemaîtreADoubreC2015Analysis of a landslide multi-date inventory in a complex mountain landscape: the Ubaye valley case studyNatural Hazards and Earth System Sciences15102369238910.5194/nhess-15-2369-2015Open DOISearch in Google Scholar

Schweingruber FH, 1996. Tree Rings and Environment. Dendroecology. Birmensdorf; Berne: Swiss Federal Institute for Forest, Snow and Landscape Research, WSL/FNP; Paul Haupt.SchweingruberFH1996Tree Rings and Environment. DendroecologyBirmensdorf;BerneSwiss Federal Institute for Forest, Snow and Landscape Research, WSL/FNP; Paul HauptSearch in Google Scholar

Seneta W and Dolatowski J, 2008. Dendrologia (Dendrology). PWN, Warszawa.SenetaWDolatowskiJ2008Dendrologia (Dendrology)PWNWarszawaSearch in Google Scholar

Shroder JF, 1980. Dendrogeomorphology: review and new techniques of tree-ring dating. Progress in Physical Geography 4(2): 161–188, 10.1177/030913338000400202.ShroderJF1980Dendrogeomorphology: review and new techniques of tree-ring datingProgress in Physical Geography4216118810.1177/030913338000400202Open DOISearch in Google Scholar

Šilhán K, Pánek T, Turský O, Brázdil R, Klimeš J and Kašičková L, 2014. Spatio-temporal patterns of recurrent slope instabilities affecting undercut slopes in flysch: A dendrogeomorphic approach using broad-leaved trees. Geomorphology 213: 240–254, 10.1016/j.geomorph.2014.01.016.ŠilhánKPánekTTurskýOBrázdilRKlimešJKašičkováL2014Spatio-temporal patterns of recurrent slope instabilities affecting undercut slopes in flysch: A dendrogeomorphic approach using broad-leaved treesGeomorphology21324025410.1016/j.geomorph.2014.01.016Open DOISearch in Google Scholar

Šilhán K, 2015. Can tree tilting indicate mechanisms of slope movement? Engineering Geology 199: 157–164, 10.1016/j.enggeo.2015.11.005.ŠilhánK2015Can tree tilting indicate mechanisms of slope movement?Engineering Geology19915716410.1016/j.enggeo.2015.11.005Open DOISearch in Google Scholar

Šilhán K and Stoffel M, 2015. Impacts of age-dependent tree sensitivity and dating approaches on dendrogeomorphic time series of landslides. Geomorphology 236: 34–43, 10.1016/j.geomorph.2015.02.003.ŠilhánKStoffelM2015Impacts of age-dependent tree sensitivity and dating approaches on dendrogeomorphic time series of landslidesGeomorphology236344310.1016/j.geomorph.2015.02.003Open DOISearch in Google Scholar

Šilhán K, 2016. How different are the results acquired from mathematical and subjective methods in dendrogeomorphology? Insights from landslide movements. Geomorphology 253: 189–198, 10.1016/j.geomorph.2015.10.012.ŠilhánK2016How different are the results acquired from mathematical and subjective methods in dendrogeomorphology? Insights from landslide movementsGeomorphology25318919810.1016/j.geomorph.2015.10.012Open DOISearch in Google Scholar

Šilhán K, Prokešová R, Medveďová A and Tichavský R, 2016. The effectiveness of dendrogeomorphic methods for reconstruction of past spatio-temporal landslide behavior. Catena 147: 325–333, 10.1016/j.catena.2016.07.035.ŠilhánKProkešováRMedveďováATichavskýR2016The effectiveness of dendrogeomorphic methods for reconstruction of past spatio-temporal landslide behaviorCatena14732533310.1016/j.catena.2016.07.035Open DOISearch in Google Scholar

Šilhán K, 2017. Dendrogeomorphic chronologies of landslides: Dating of true slide movements? Earth Surface Processes and Landforms 42(13): 2109–2118, 10.1002/esp.4153.ŠilhánK2017Dendrogeomorphic chronologies of landslides: Dating of true slide movements?Earth Surface Processes and Landforms42132109211810.1002/esp.4153Open DOISearch in Google Scholar

Stefanini MC, 2004. Spatio-temporal analysis of a complex landslide in the Northern Apennines (Italy) by means of dendrochronology. Geomorphology 63(3–4): 191–202, 10.1016/j.geomorph.2004.04.003.StefaniniMC2004Spatio-temporal analysis of a complex landslide in the Northern Apennines (Italy) by means of dendrochronologyGeomorphology633–419120210.1016/j.geomorph.2004.04.003Open DOISearch in Google Scholar

Stoffel M, 2005. Spatio-temporal variations of rockfall activity into forests – results from tree-ring and tree analysis. PhD thesis No. 1480, University of Fribourg, GeoFocus, 12.StoffelM2005Spatio-temporal variations of rockfall activity into forests – results from tree-ring and tree analysisPhD thesis No. 1480University of FribourgGeoFocus12Search in Google Scholar

Stoffel M, Butler DR and Corona C, 2013. Mass movements and tree rings: A guide to dendrogeomorphic field sampling and dating. Geomorphology 200: 106–120, 10.1016/j.geomorph.2012.12.017.StoffelMButlerDRCoronaC2013Mass movements and tree rings: A guide to dendrogeomorphic field sampling and datingGeomorphology20010612010.1016/j.geomorph.2012.12.017Open DOISearch in Google Scholar

Stupnicka E, 2013. Geologia regionalna Polski (Regional geology of Poland). Uniwersytet Warszawski, Warszawa (in Polish).StupnickaE2013Geologia regionalna Polski (Regional geology of Poland)Uniwersytet WarszawskiWarszawa (in Polish)Search in Google Scholar

Uhlemann S, Wilkinson PB, Chambers JE, Maurer H, Merritt AJ, Gunn DA and Meldrum PI, 2015. Interpolation of landslide movements to improve the accuracy of 4D geoelectrical monitoring. Journal of Applied Geophysics 121: 93–105, 10.1016/j.jappgeo.2015.07.003.UhlemannSWilkinsonPBChambersJEMaurerHMerrittAJGunnDAMeldrumPI2015Interpolation of landslide movements to improve the accuracy of 4D geoelectrical monitoringJournal of Applied Geophysics1219310510.1016/j.jappgeo.2015.07.003Open DOISearch in Google Scholar

Van Den Eeckhaut M, Poesen J, Verstraeten G, Vanacker V, Nyssen J, Moeyersons J, van Beek LPH and Vandekerckhove L, 2007. Use of LIDAR-derived images for mapping old landslides under forest. Earth Surface Processes and Landforms 32: 754–769, 10.1002/esp.1417.Van Den EeckhautMPoesenJVerstraetenGVanackerVNyssenJMoeyersonsJvan BeekLPHVandekerckhoveL2007Use of LIDAR-derived images for mapping old landslides under forestEarth Surface Processes and Landforms3275476910.1002/esp.1417Open DOISearch in Google Scholar

Van Den Eeckhaut M, Muys B, Van Loy K, Poesen J and Beeckman H, 2009. Evidence for repeated reactivation of old landslides under forest. Earth Surface Processes and Landforms 34(3): 352–365, 10.1002/esp.1727.Van Den EeckhautMMuysBVan LoyKPoesenJBeeckmanH2009Evidence for repeated reactivation of old landslides under forestEarth Surface Processes and Landforms34335236510.1002/esp.1727Open DOISearch in Google Scholar

Winchester V and Chaujar RK, 2002. Lichenometric dating of slope movements, Nant Ffrancon, North Wales. Geomorphology 47: 61–74, 10.1016/S0169-555X(02)00141-1.WinchesterVChaujarRK2002Lichenometric dating of slope movements, Nant Ffrancon, North WalesGeomorphology47617410.1016/S0169-555X(02)00141-1Open DOISearch in Google Scholar

Wistuba M, Malik I, Gärtner H, Kojs P and Owczarek P, 2013. Application of eccentric growth of trees as a tool for landslide analyses: The example of Picea abies Karst. in the Carpathian and Sudeten Mountains (Central Europe). Catena 111: 41–55, 10.1016/j.catena.2013.06.027.WistubaMMalikIGärtnerHKojsPOwczarekP2013Application of eccentric growth of trees as a tool for landslide analyses: The example of Picea abies Karst. in the Carpathian and Sudeten Mountains (Central Europe)Catena111415510.1016/j.catena.2013.06.027Open DOISearch in Google Scholar

Wistuba M and Malik I, 2016. Dendrochronologiczna ocena przestrzennej zmienności zagrożenia osuwiskowego w masywie góry Prusów (Beskid Żywiecki) (Dendrochronological assessment of spatial distribution of landslide hazard in the massif of Mt Prusów (Beskid Żywiecki Mts)). Studia i Materiały Centrum Edukacji Przyrodniczo-Leśnej w Rogowie 18, 48(3): 150–160 (in Polish).WistubaMMalikI2016Dendrochronologiczna ocena przestrzennej zmienności zagrożenia osuwiskowego w masywie góry Prusów (Beskid Żywiecki) (Dendrochronological assessment of spatial distribution of landslide hazard in the massif of Mt Prusów (Beskid Żywiecki Mts))Studia i Materiały Centrum Edukacji Przyrodniczo-Leśnej w Rogowie18483150160(in Polish)Search in Google Scholar

Xu Q, Fan XM, Huang RQ and Van Westen C, 2009. Landslide dams triggered by the Wenchuan Earthquake, Sichuan Province, south west China. Bulletin of Engineering Geology and the Environment 68(3): 373–386, 10.1007/s10064-009-0214-1.XuQFanXMHuangRQVan WestenC2009Landslide dams triggered by the Wenchuan Earthquake, Sichuan Province, south west ChinaBulletin of Engineering Geology and the Environment68337338610.1007/s10064-009-0214-1Open DOISearch in Google Scholar

Zielonka T and Dubaj N, 2009. A tree-ring reconstruction of geomorphologie disturbances in cliff forests in the Tatra Mts. Landform Analysis 11: 71–76.ZielonkaTDubajN2009A tree-ring reconstruction of geomorphologie disturbances in cliff forests in the Tatra MtsLandform Analysis117176Search in Google Scholar

Zielonka T and Malcher P, 2009. The dynamics of a mountain mixed forest under wind disturbances in the Tatra Mountains, central Europe — a dendroecological reconstruction. Canadian Journal of Forest Research 39(11): 2215–2223, 10.11397X09-130.ZielonkaTMalcherP2009The dynamics of a mountain mixed forest under wind disturbances in the Tatra Mountains, central Europe — a dendroecological reconstructionCanadian Journal of Forest Research39112215222310.11397X09-130Open DOISearch in Google Scholar

eISSN:
1897-1695
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
Volume Open
Fachgebiete der Zeitschrift:
Geowissenschaften, andere