1. bookVolumen 67 (2017): Heft 1 (December 2017)
Zeitschriftendaten
License
Format
Zeitschrift
eISSN
1736-8723
Erstveröffentlichung
24 Mar 2011
Erscheinungsweise
2 Hefte pro Jahr
Sprachen
Englisch
access type Uneingeschränkter Zugang

An overview of adaptative responses to drought stress in Eucalyptus spp.

Online veröffentlicht: 25 Apr 2018
Seitenbereich: 86 - 96
Eingereicht: 18 Sep 2017
Akzeptiert: 05 Jan 2018
Zeitschriftendaten
License
Format
Zeitschrift
eISSN
1736-8723
Erstveröffentlichung
24 Mar 2011
Erscheinungsweise
2 Hefte pro Jahr
Sprachen
Englisch
Abstract

Eucalyptus is a plant frequently present and cultivated in arid regions because of its high adaptation to drought. Furthermore, it is known by its numerous species which represents a great opportunity to choose several tolerant species with variable uses. Therefore, the choice of species, hybrids or genotypes resistant to aridity becomes a necessity before any plantation in regions and countries characterized by semi-arid, arid and Saharan climates. Our review shows an important effect of drought on anatomical, physiological and biochemical parameters of Eucalyptus spp. Indeed, water stress acts directly on growth, yield and response to pests. However, the response to drought varies significantly among species, genotypes, hybrids and clones. This result represents a field for the selection of eucalypts tolerant and adapted to water deficit or climate change.

Ali, I., Abbas, S.Q., Hameed, M., Naz, N., Zafar, S., Kanwal, S. 2009. Leaf anatomical adaptations in some exotic species of Eucalyptus L’Hér. (Myrtaceae). – Pakistan Journal of Botany, 41, 2717–2727.Search in Google Scholar

Barradas, C., Pinto, G., Correia, B., Castro, B.B., Phillips, A.J.L., Alves, A. 2017. Drought x disease interaction in Eucalyptus globulus under Neofusicoccum eucalyptorum infection. – Plant Pathology, 67, 87–96.Search in Google Scholar

Basu, S., Ramegowda, V., Kumar, A., Pereira, A. 2016. Plant adaptation to drought stress. – F1000 Research, 5, 1554.Search in Google Scholar

Batish, D.R., Singh, H.P, Kohli, R.K., Kaur, Sh. 2008. Eucalyptus essential oil as a natural pesticide. – Forest Ecology and Management, 256(12), 2166–2174.Search in Google Scholar

Beech, E., Rivers, M., Oldfield, S., Smith P.P. 2017. GlobalTreeSearch: The first complete global database of tree species and country distributions. – Journal of Sustainable Forestry, 36(5), 454–489.Search in Google Scholar

Bilal, H., Nisa, S., Ali, S.S. 2014. Effects of Exotic Eucalyptus Plantation on the Ground and Surface Water of District Malakand, Pakistan. – International Journal of Innovation and Scientific Research, 8(2), 299–304.Search in Google Scholar

Caldeira, M.C., Fernandéz, V., Tomé, J., Pereira, J.S. 2002. Eucalyptus longicorn borer response to tree water stress. – Annals of Forest Science, 59, 99–106.Search in Google Scholar

Christina, M., Nouvellon, Y., Laclau, J.P., Stape, J.L., Bouillet, J.P., Lambais, G.R., le Maire, G. 2017. Importance of deep water uptake in tropical eucalypt forest. – Functional Ecology, 31, 509–519.10.1111/1365-2435.12727DOI öffnenSearch in Google Scholar

Corrêa, T.R., Picoli, E.A.T., de Souza, G.A., Condé, S.A., Silva, N.M., Lopes-Mattos, K.L.B., de Resende, M.D.V, Zauza, E.A.V., Oda, S. 2017. Phenotypic markers in early selection for tolerance to dieback in Eucalyptus. – Industrial Crops and Products, 107, 130–138.Search in Google Scholar

Correia, B., Pintó-Marijuan, M., Neves, L., Brossa, R., Dias, M.C., Costa, A., Castro, B.B., Araújo, C., Santos, C., Chaves, M.M., Pinto, G. 2013. Water stress and recovery in the performance of two Eucalyptus globulus clones: physiological and biochemical profiles. – Physiologia Plantarum, 150(4), 580–592.Search in Google Scholar

Coutinho, T.A., Wingfield, M.J. 2017. Ralstonia solanacearum and R. pseudosolanacearum on Eucalyptus: Opportunists or primary pathogens? – Frontiers in Plant Science, 8, article 761, doi: 10.3389/fpls.2017.00761.10.3389/fpls.2017.00761542548428553301Search in Google Scholar

De Almeida, M. R., Aumond, M. Jr., Da Costa, C.T., Schwambach, J., Ruedell, C.M., Correa, L.R., Fett- Neto, A.G. 2017. Environmental control of adventitious rooting in Eucalyptus and Populus cuttings. – Trees, 31, 1377–1390.Search in Google Scholar

Doran, J.C., Bell, R.E. 1994. Influence of non-genetic factors on yield of monoterpenes in leaf oils of Eucalyptus camaldulensis. – New Forest, 8(4), 363–379.Search in Google Scholar

du Toit, B., Malherbe, G.F., Kunneke, A., Seifert, T., Wessels, C.B. 2017. Survival and long-term growth of eucalypts on semi-arid sites in a Mediterranean climate, South Africa. – Southern Forests: a Journal of Forest Science, 79(3), 235–249.10.2989/20702620.2016.1254914DOI öffnenSearch in Google Scholar

Du, H., Zeng, F., Peng, W., Wang, K., Zhang, H., Liu, L., Song, T. 2015. Carbon Storage in a Eucalyptus Plantation Chronosequence in Southern China. – Forests, 6, 1763–1778.Search in Google Scholar

Emara, S, Shalaby, A.E. 2011. Seasonal variation of fixed and volatile oil percentage of four Eucalyptus spp. related to lamina anatomy. – African Journal Plant Science, 5(6), 353–359.Search in Google Scholar

ENCE. 2009. Sustainable Forest Management and Eucalyptus, Grupo Empresarial ENCE, Spain. 76 pp.Search in Google Scholar

FAO. 1982. Eucalyptus in reforestation. (Les eucalyptus dans les reboisements). Rome, Italy. 783 pp. (In French).Search in Google Scholar

FAO. 2011. Eucalyptus in East Africa, Socio-economic and environmental issues, by Gessesse Dessie, Teklu Erkossa. Planted Forests and Trees Working Paper 46/E, Forest Management Team, Forest Management Division. FAO, Rome. 30 pp.Search in Google Scholar

Fladung, M., Schroeder, H., Wehenkel, C., Kersten, B. 2015. Differentiation of six Eucalyptus trees grown in Mexico by ITS and six chloroplast barcoding markers. – Silvae Genetica, 64(3), 121–13010.1515/sg-2015-0012Search in Google Scholar

Gonçalves, J.L.M., Alvares, C.A., Rocha, J.H.T., Brandani, C.B., Rodrigo, H.R. 2017. Eucalypt plantation management in regions with water stress. – Southern Forests: a Journal of Forest Science, 1, 1–15.Search in Google Scholar

Graciano, C., Guiamet, J.J., Goya, J.F. 2006. Fertilization and water stress interactions in young Eucalyptus grandis plants. – Canadian Journal of Forest Research, 36, 1028–1034.10.1139/x05-301DOI öffnenSearch in Google Scholar

Granda, V., Cuesta, C., Alvarez, R., Ordas, R., Centeno, M.L., Rodriguez, A., Majada, J.P., Fernandez, B., Feito, I. 2011. Rapid responses of C14 clone of Eucalyptus globulus to root drought stress: timecourse of hormonal and physiological signaling. – Journal of Plant Physiology, 168, 661–670.Search in Google Scholar

Granda, V., Delatorre, C., Cuesta, C., Centeno, M., Fernandez, B., Rodriguez, A., Feito, I. 2014. Physiological and biochemical responses to severe drought stress of nine Eucalyptus globulus clones: a multivariate approach. – Tree Physiology, 34(7), 778–786.10.1093/treephys/tpu05225009154DOI öffnenSearch in Google Scholar

Hodecker, B.E.R. 2015. Comparison of drought stress responses of tolerant and sensitive Eucalypt genotypes. University of Viçosa, Minas Gerais-Brasil. 148 pp.Search in Google Scholar

Hojjati, M., Barzeg, H. 2017. Chemical composition and biological activities of lemon (Citrus limon) leaf essential oil. – Nutrition and Food Sciences Research, 4(4), 15–24.Search in Google Scholar

Joshi, M. Palanisami, K. 2011. Impact of Eucalyptus plantations on ground water availability in South Karnataka. – ICID 21st International Congress on Irrigation and Drainage, 255–262.Search in Google Scholar

Khouja, M.L., Khaldi, A., Rejeb, M.N. 2001. Results of the Eucalyptus introduction trials in Tunisia. – Proceedings of the international conference. Eucalyptus in the Mediterranean basin: Perspectives and new utilization, 163–168.Search in Google Scholar

Labate, C.A., de Assis, T.F., Oda, S. et al. 2008. Eucalyptus. – Kole, C.H., Hall, T.C. (eds.). Compendium of transgenic crop plants: transgenic forest trees species. Blackwell Publishing, Oxford, 35–108.Search in Google Scholar

Laclau, J.P., da Silva, E.A., Lambais, G.R., Bernoux, M., le Maire, G., Stape, J.L., Bouillet, J.P., Gonçalves, J.L.M., Jourdan, CH., Nouvellon, Y. 2013. Dynamics of soil exploration by fine roots down to a depth of 10 m throughout the entire rotation in Eucalyptus grandis plantations. – Frontiers in Plant Science, Functional Plant Ecology, 4(243), 1–12.Search in Google Scholar

Leicach, S.R., Garau, A.M., Guarnaschelli, A.B., Grass, M.A.Y., Sztarker, N.D., Dato, A. 2010. Changes in Eucalyptus camaldulensis essential oil composition as response to drought preconditioning. – Journal of Plant Interactions, 5(3), 205–210.Search in Google Scholar

Leicach, S.R., Yaber G.M.A., Chludil, H.D., Garau, A.M., Guarnaschelli, A.B., Fernandez, P.C. 2012. Chemical defenses in Eucalyptus species: A sustainable strategy based on antique knowledge to diminish agrochemical dependency, new advances and contributions to forestry research. – Oteng-Amoako, A.A. (ed.). New Advances and Contributions to Forestry Research, 225–256.Search in Google Scholar

Lima, W.P., Jarvis, P., Rhizopoulou, S. 2003. Stomatal responses of Eucalyptus species to elevated CO2 concentration and drought stress. – Scientia Agricola, 60(2), 231–238.10.1590/S0103-90162003000200005DOI öffnenSearch in Google Scholar

Lin, Y.S. 2012. How will Eucalyptus tree species respond to global climate change? – A comparison of temperature responses of photosynthesis. PhD Thesis, University of Western Sydney. 185 pp.Search in Google Scholar

Lundqvist, S.O., Grahn, T., Olsson, L., Seifert, T. 2017. Comparison of wood, fibre and vessel properties of drought-tolerant eucalypts in South Africa. – Southern Forests: a Journal of Forest Science, 79(3), 215–225.10.2989/20702620.2016.1254910DOI öffnenSearch in Google Scholar

Manika, N., Mishra, P., Kumar, N., Chanotiya, C.S., Bagchi, G.D. 2012. Effect of season on yield and composition of the essential oil of Eucalyptus citriodora Hook. leaf grown in sub-tropical conditions of North India. – Journal of Medicinal Plants Research, 6(14), 2875–2879.10.5897/JMPR11.1611DOI öffnenSearch in Google Scholar

Martorell, S., Diaz-Espejo, A., Medrano, H., Ball, M.C., Choat, B. 2013. Rapid hydraulic recovery in Eucalyptus pauciflora after drought: linkages between stem hydraulics and leaf gas exchange. – Plant, Cell and Environment, 37, 617–626.Search in Google Scholar

Maseda, P.H., Fernández, R.J. 2016. Growth potential limits drought morphological plasticity in seedlings from six Eucalyptus provenances. –Tree Physiology, 36, 243–251.Search in Google Scholar

Matos, F.S., Oliveira, P.R.C., Anciotti Gil, J.L.R., de Sousa, P.V., Gonçalves, G.A., Sousa, M.P.B.L., da Silveira, P.S., da Silva, L.M. 2016. Eucalyptus urocan drought tolerance mechanisms. – African Journal of Agricultural Research, 11(18), 1617–1622.Search in Google Scholar

McDonnell, L.M., Coleman, H.D., French, D.G., Meilan, R., Mansfield, S.D. 2010. Engineering Trees with Target Traits. –El-Kassaby, Y.A., Prado, J.A. (eds.). Forests and Genetically Modified Trees, FAO, Rome, 77–122.Search in Google Scholar

McKiernan, A.B., Potts, B.M., Brodribb, T., Hovenden, M.J., Davies, N.W., McAdan, S.A., Ross, J.J., Rodemann, T., O’Reilly-Wapstra, J.M. 2016. Responses to mild water deficit and rewatering differ among secondary metabolites but are similar among provenances within Eucalyptus species. – Tree Physiology, 36, 133–147.Search in Google Scholar

McKiernan, A.B., Potts, B.M., Hovenden, M.J., Brodribb, T.J., Davies, N.W., Rodemann, T., McAdam, S.A.M., O’Reilly-Wapstra, J.M. 2017. A water availability gradient reveals the deficit level required to affect traits in potted juvenile Eucalyptus globulus. – Annals of Botany, 119(6), 1043–1052.Search in Google Scholar

Merchant, A., Callister, A., Arndt, S., Tausz, M., Adams, M.A. 2007. Contrasting physiological responses of six Eucalyptus species to water deficit. – Annals of Botany, 100, 1507–1515.10.1093/aob/mcm234275922117905722DOI öffnenSearch in Google Scholar

Minhas, P.S., Yadav, R.K., Lal, K., Chaturvedi, R.K. 2015. Effect of long-term irrigation with wastewater on growth, biomass production and water use by Eucalyptus (Eucalyptus tereticornis Sm.) planted at variable stocking density. – Agricultural Water Management, 152, 151–160.10.1016/j.agwat.2015.01.009Search in Google Scholar

Mitchell, P.J., O’Grady, A.P., Tissue, D.T., White, D.A., Ottenschlaeger, M.L., Pinkard, E.A. 2013. Drought response strategies define the relative contributions of hydraulic dysfunction and carbohydrate depletion during tree mortality. – New Phytologist, 197, 862–872.Search in Google Scholar

Morris, J., Zhang, N.N., Yang, Z.J., Collopy, J., Xu, D.P. 2004. Water use by fastgrowing Eucalyptus urophylla plantations in southern China. – Tree Physiology, 24, 1035–1044.10.1093/treephys/24.9.103515234901DOI öffnenSearch in Google Scholar

Myburg, A., Grattapaglia, D., Tuskan, G., Hellsten, U., Hayes, R., Grimwood, J., et al. 2014. The genome of Eucalyptus grandis. – Nature, 509, 356–362.Search in Google Scholar

OECD. 2016. Eucalyptus (Eucalyptus spp.) – Safety Assessment of Transgenic Organisms in the Environment. OECD Consensus Documents, OECD Publishing, Paris, 6, 245–323.Search in Google Scholar

Ouyanga, Y., Xu, D., Leininger, T.D., Zhang, N. 2016. A system dynamic model to estimate hydrological processes and water use in a eucalypt plantation. – Ecological Engineering, 86, 290–299.10.1016/j.ecoleng.2015.11.008DOI öffnenSearch in Google Scholar

Pfautsch, S., Harbusch, M., Wesolowski, A., Smith, R., Macfarlane, C., Tjoilker, M.G., Reich, P.B., Adams, M.A. 2016. Climate determines vascular traits in the ecologically diverse genus Eucalyptus. – Ecology Letters, 19, 240–248.10.1111/ele.1255926743135DOI öffnenSearch in Google Scholar

Potts, B.M. 2004. Genetic improvements of eucalypts. – Burley, J., Evans, J., Youngquist, J.A. (eds.) Encyclopedia of Forest Sciences. Elsevier Academic Press, Oxford, 1480–1490.Search in Google Scholar

Queiroz, T.B., Pereira, N.N.J., Silva, J.C.R.L., da Fonseca, F.S.A., Martins E.R. 2017. Influence of water regime on initial growth and essential oil of Eucalyptus globulus. (Influência do regime hídrico sobre o crescimento inicial e óleo essencial de Eucalyptus globulus). – Ciência Rural, Santa Maria, 47(03), e20150530. (In Portuguese).10.1590/0103-8478cr20150530Search in Google Scholar

Ramsfield, T.D., Bentz, B.J., Faccoli, M., Jactel, H., Brockerhoff, E.G. 2016. Forest health in a changing world: effects of globalization and climate change on forest insect and pathogen impacts. – Forestry, 89, 245–252.10.1093/forestry/cpw018Search in Google Scholar

Sadlon, A.E., Lamson, D.W. 2010. Immune-modifying and antimicrobial effects of Eucalyptus oil and simple inhalation devices. – Alternative Medicine Review, 15(1), 33–47.Search in Google Scholar

Schühli, G.S., Penteado, S.Ch., Barbosa, L.R., Filho, W.R., Lede, E.T. 2016. A review of the introduced forest pests in Brazil. (Um artigo de revisão sobre pragas florestais introduzidas no Brasil). – Pesquisa Agropecuária Brasileira, 51(5), 397–406. (In Portuguese).10.1590/S0100-204X2016000500001Search in Google Scholar

Searson, M.J., Thomas, D.S., Montagu, K.D., Conroy, J.P. 2004. Wood density and anatomy of waterlimited eucalypts. – Tree Physiology, 24, 1295–1302.10.1093/treephys/24.11.129515339739DOI öffnenSearch in Google Scholar

Seaton, S., Matusick, G., Ruthrof, K.X., Hardy, G.E.St.J. 2015. Outbreak of Phoracanthasemipunctata in Response to Severe Drought in a Mediterranean Eucalyptus Forest. – Forests, 6, 3868–3881.Search in Google Scholar

Shvaleva, A., Costa e Silva, F, Breia, E., Jouve, J., Hausman, J.F., Almeida, M.H., Maroco, J.P., Rodrigues, M.L., Pereira, J.S., Chaves, M.M. 2005. Metabolic responses to water deficit in two Eucalyptus globulus clones with contrasting drought sensitivity. – Tree Physiology, 26, 239–248.10.1093/treephys/26.2.23916356921DOI öffnenSearch in Google Scholar

Silva, I.M.A., de Souza, M.W.R., Rodrigues, A.C.P., Correia, L.P.S., Veloso, R.V.S., dos Santos, J.B., Titon, M., Gonçalves, J.F., de Laia, M.L. 2016a. Determination of parameters for selection of Eucalyptus clones tolerant to drought. – African Journal of Agricultural Research, 11(40), 3940–3949.Search in Google Scholar

Silva, P.H.M., Campoe, O.C., de Paula, R.C., Lee, D.J. 2016b. Seedling growth and physiological responses of sixteen eucalypt taxa under controlled water regime. – Forests, 7(6), 110.Search in Google Scholar

Sousa, A.O., Assis, E.T.C.M., Pirovani, C.P., Alvim, F.C., Costa, M.G.C. 2014. Phosphate-induced-1 gene from Eucalyptus (EgPHI-1) enhances osmotic stress tolerance in transgenic tobacco Genetics and Molecular Research, 13(1), 1579–1588.Search in Google Scholar

Spokevicius, A.V., Tibbits, J., Rigault, P., Nolin, M.A., Müller, C., Merchant, A. 2017. Medium term water deficit elicits distinct transcriptome responses in Eucalyptus species of contrasting environmental origin. – BMC Genomics, 18(1), 284.10.1186/s12864-017-3664-z538398528388878DOI öffnenSearch in Google Scholar

Stape, J.L., Binkley, D., Ryan, M.G., Gomes, A.N. 2004. Water use, water limitation, and water use efficiency in a Eucalyptus plantation Water use, water limitation, and water use efficiency in a Eucalyptus plantation. – Bosque, 25(2), 35–41.Search in Google Scholar

Susiluoto, S., Berninger, F. 2007. Interactions between morphological and physiological drought responses in Eucalyptus microtheca. – Silva Fennica, 41(2), 221–233.Search in Google Scholar

Szota, Ch., Farrell, C., Koch, J.M., Lambers, H., Veneklaas, E.J. 2011. Contrasting physiological responses of two co-occurring eucalypts to seasonal drought at restored bauxite mine sites. – Tree Physiology, 31(10), 1052–1066.Search in Google Scholar

Valadares, J., de Paula, N.F., de Paula, R.C. 2014. Physiological changes in eucalyptus hybrids under different irrigation regimes. – Revista Ciência Agronômica, 45(4), 805–814.Search in Google Scholar

Valdés, A.E., Irar, S., Majada, J.P., Rodriguez, A., Fernandez, B., Pagès, M. 2013. Drought tolerance acquisition in Eucalyptus globulus (Labill.): A research on plant morphology, physiology and proteomics. – Journal of Proteomics, 79, 263–276.10.1016/j.jprot.2012.12.01923313219DOI öffnenSearch in Google Scholar

Vecchio, M.G., Loganes, C., Minto, C. 2016. Beneficial and healthy properties of Eucalyptus plants: A great potential use. – The Open Agriculture Journal, 10(suppl. 1, M3), 52–57.Search in Google Scholar

Warrier, R.R., Jayaraj, R.S.C., Balu, A. 2013. Variation in gas exchange characteristics in clones of Eucalyptus camaldulensis under varying conditions of CO2. – Journal of Stress Physiology & Biochemistry, 9(3), 333–344.Search in Google Scholar

Wessels, C.B., Crafford, P.L., du Toit, B., Grahn, T., Johansson, M., Lundqvist, S.O., Säll, H., Seifer, T. 2016. Variation in physical and mechanical properties from three drought tolerant Eucalyptus species grown on the dry west coast of Southern Africa. – European Journal of Wood and Wood Products, 4, 563–575.Search in Google Scholar

Whitehead, D., Beadle, C.L. 2004. Physiological regulation of productivity and water use in Eucalyptus: a review. – Forest Ecology and Management, 193, 113–140.Search in Google Scholar

Williams, R.A. 2015. Mitigating biodiversity concerns in Eucalyptus plantations located in South China. – Journal of Biosciences and Medicines, 3, 1–8.Search in Google Scholar

Wills A., Far, J.D. 2016. Gum leaf skeletoniser Urab alugens (Lepidoptera: Nolidae) larval outbreaks occur in high rainfall Western Australian jarrah. – Australian Entomology, doi:10.1111/aen.12255.10.1111/aen.12255DOI öffnenSearch in Google Scholar

Zahid, D. M., Shah, F. R., Majeed A. 2010. Planting Eucalyptus camaldulensis in arid environment – Is it useful species under water deficit system. – Pakistan Journal of Botany, 42(3), 1733–1744.Search in Google Scholar

Zhang, W.J. 2012. Did Eucalyptus contribute to environment degradation? Implications from a dispute on causes of severe drought in Yunnan and Guizhou, China. – Environmental Skeptics and Critics, 1(2), 34–38.Search in Google Scholar

Zhou, Sh.X., Medlyn, B.E., Prentice, I.C. 2016. Longterm water stress leads to acclimation of drought sensitivity of photosynthetic capacity in xeric but not riparian Eucalyptus species. – Annals of Botany, 117, 133–144.Search in Google Scholar

Zweifel, R., Drew, D.M., Schweingruber, F., Downes, G.M. 2014. Xylem as the main origin of stem radius changes in Eucalyptus. – Functional Plant Biology, 41, 520–534.10.1071/FP1324032481010DOI öffnenSearch in Google Scholar

Empfohlene Artikel von Trend MD

Planen Sie Ihre Fernkonferenz mit Scienceendo