Uneingeschränkter Zugang

Prediction of Water Quality in Riva River Watershed


Zitieren

[1] Singh KP, Malik A, Sinha S. Water quality assessment and apportionment of pollution sources of Gomti river (India) using multivariate statistical techniques - a case study. Analytica Chim Acta. 2015;538(1-2):355-74. DOI: 10.1016/j.aca.2005.02.006.10.1016/j.aca.2005.02.006Open DOISearch in Google Scholar

[2] Mishra BK, Regmi RK, Masago Y, Fukushi K, Kumar P, Saraswat C. Assessment of Bagmati river pollution in Kathmandu valley: Scenario-based modeling and analysis for sustainable urban development. Sustain Water Qual Ecol. 2017;9-10:67-77. DOI: 10.1016/j.swaqe.2017.06.001.10.1016/j.swaqe.2017.06.001Open DOISearch in Google Scholar

[3] El-Tohamy WS, Abdel-Baki SN, Abdel-Aziz NE, Khidr AAA. Evaluation of spatial and temporal variations of surface water quality in the Nile River. Ecol Chem Eng S. 2018;25:569-80. DOI: 10.1515/eces-2018-0038.10.1515/eces-2018-0038Open DOISearch in Google Scholar

[4] Taylor SD, He Y, Hiscock KM. Modelling the impacts of agricultural management practices on river water quality in Eastern England. J Environ Manage. 2016;180:147-63. DOI: 10.1016/j.jenvman.2016.05.002.10.1016/j.jenvman.2016.05.00227213867Open DOISearch in Google Scholar

[5] Pirani M, Panton A, Purdie DA, Sahu SK. Modelling macronutrient dynamics in the Hampshire Avon River: A Bayasian approach to estimate seasonal variability and total flux. Sci Total Environ. 2016;572:1449-60. DOI: 10.1016/j.scitotenv.2016.04.129.10.1016/j.scitotenv.2016.04.12927179620Open DOISearch in Google Scholar

[6] Melching CS, Liang J, Fleere L, Wethington D. Modeling the water quality impacts of the separation of the Great Lakes and Mississippi River basins for invasive species control. J Great Lakes Res. 2015;41:87-98. DOI: 10.1016/j.jglr.2014.11.009.10.1016/j.jglr.2014.11.009Open DOISearch in Google Scholar

[7] Mainali J, Chang H. Landscape and anthropogenic factors affecting spatial patterns of water quality trends in a large river basin, South Korea. J Hydrol. 2018;564:26-40. DOI: 10.1016/j.jhydrol.2018.06.074.10.1016/j.jhydrol.2018.06.074Open DOISearch in Google Scholar

[8] Swain R, Sahoo B. Improving river water quality monitoring using satellite data products and a genetic algorithm processing approach. Sustain Water Qual Ecol. 2017;9-10:88-114. DOI: 10.1016/j.swaqe.2017.09.001.10.1016/j.swaqe.2017.09.001Open DOISearch in Google Scholar

[9] Shia Y, Xu G, Wang Y, Engel BA, Peng H, Zhang W, et al. Modelling hydrology and water quality processes in the Pengxi River basin of the Three Gorges Reservoir using the soil and water assessment tool. Agr Water Manage. 2017;82:24-38. DOI: 10.1016/j.agwat.2016.12.007.10.1016/j.agwat.2016.12.007Open DOISearch in Google Scholar

[10] Decelis LDR, Igúzquiza EP, Andreo B. Spatial prediction of water quality variables along a main river channel, in presence of pollution hotspots. Sci Total Environ. 2017;605-606:276-90. DOI: 10.1016/j.scitotenv.2017.06.145.10.1016/j.scitotenv.2017.06.14528668739Search in Google Scholar

[11] Vrebos D, Beauchard O, Meire P. The impact of land use and spatial mediated processes on the water quality in a river system. Sci Total Environ. 2017;601-602:365-73. DOI: 10.1016/j.scitotenv.2017.05.217.10.1016/j.scitotenv.2017.05.21728570971Open DOISearch in Google Scholar

[12] Jannin LB, Brito D, Sun X, Jauch E, Neves R, Sauvage S, et al. Spatially distributed modelling of surface water - groundwater exchanges during overbank flood events - a case study at the Garonne River. Adv Water Resour. 2016;94:146-59. DOI: 10.1016/j.advwatres.2016.05.008.10.1016/j.advwatres.2016.05.008Open DOISearch in Google Scholar

[13] Gorzel M, Kornijow R, Buczynska E. Quality of rivers: Comparison of hydro-morphological, physical-chemical and biological methods. Ecol Chem Eng S. 2018;25:101-22. DOI: 10.1515/eces-2018-0007.10.1515/eces-2018-0007Open DOISearch in Google Scholar

[14] Wang Y, Zhang W, Zhao Y, Peng H, Shi Y. Modelling water quality and quantity with the influence of inter-basin water diversion projects and cascade reservoirs in the Middle-lower Hanjiang River. J Hydrol. 2016;541:1348-62. DOI:10.1016/j.jhydrol.2016.08.039.10.1016/j.jhydrol.2016.08.039Open DOISearch in Google Scholar

[15] Whitehead PG, Bussi G, Bowes MJ, Read DS, Hutchins MG, Elliott JA, et al. Dynamic modelling of multiple phytoplankton groups in river with an application to the Thames river system in the UK. Environ Model Softw. 2015;74: 75-91. DOI: 10.1016/j.envsoft.2015.09.010.10.1016/j.envsoft.2015.09.010Open DOISearch in Google Scholar

[16] Ogleni N, Topal B. Water quality assessment of the Mudurnu River, Turkey, using biotic indices. Water Resour Manage. 2011;25:2487-508. DOI: 10.1007/s11269-011-9822-1.10.1007/s11269-011-9822-1Open DOISearch in Google Scholar

[17] Ustaoğlu F, Tepe Y. Water quality and sediment contamination assessment of Pazarsuyu Stream, Turkey using multivariate statistical methods and pollution indicators. J Soil Water Conserv. 2019;7:47-56. DOI: 10.1016/j.iswcr.2018.09.001.10.1016/j.iswcr.2018.09.001Open DOISearch in Google Scholar

[18] Papazova P, Simeonova P. Long-term statistical assessment of the river quality of Tundja River. Ecol Chem Eng S. 2012;19:213-26. DOI: 10.2478/v10216-011-0016-9.10.2478/v10216-011-0016-9Open DOISearch in Google Scholar

[19] Avila R, Horn B, Moriarty E, Hodson R, Moltchanova E. Evaluating statistical model performance in water quality prediction. J Environ Manage. 2018;206:910-9. DOI: 10.1016/j.jenvman.2017.11.049.10.1016/j.jenvman.2017.11.04929207304Open DOISearch in Google Scholar

[20] Libera DA, Sankarasubramanian A. Multivariate bias corrections of mechanistic water quality model predictions. J Hydrol. 2018;564:529-41. DOI: 10.1016/j.jhydrol.2018.07.043.10.1016/j.jhydrol.2018.07.043Open DOISearch in Google Scholar

[21] Tomas D, Čurlin M, Marić AS. Assessing the surface water status in Pannonian ecoregion by the water quality index model. Ecol Indic. 2017;79:182-90. DOI: 10.1016/j.ecolind.2017.04.033.10.1016/j.ecolind.2017.04.033Open DOISearch in Google Scholar

[22] Mahmoodabadi M, Arshad RR. Long-term evaluation of water quality parameters of the Karoun River using a regression approach and the adaptive neuro-fuzzy inference system. Mar Pollut Bull. 2018;126:372-80. DOI: 10.1016/j.marpolbul.2017.11.051.10.1016/j.marpolbul.2017.11.05129421114Open DOISearch in Google Scholar

[23] Kim SE, Seo IW. Artificial Neural Network ensemble modeling with conjunctive data clustering for water quality prediction in rivers. J Hydro-Environ Res. 2015;9:3325-39. DOI: 10.1016/j.jher.2014.09.006.10.1016/j.jher.2014.09.006Open DOISearch in Google Scholar

[24] Turkish Standards Institution (TSE), (1989). Water Quality - Total Solids Determination. TS 7093, 4. Ankara. https://en.tse.org.tr.Search in Google Scholar

[25] APWA, AWWA, WEF, Standard Methods for the Examination of Water and Wastewater. 21th Ed. Washington, DC: American Public Health Association; 2005. ISBN: 0875530478.Search in Google Scholar

[26] Arora S, Keshari AK. Estimation of re-aeration coefficient using MLR for modelling water quality of rivers in urban environment. Groundwater Sustainable Dev. 2018;7:430-5. DOI: 10.1016/j.gsd.2017.11.006.10.1016/j.gsd.2017.11.006Open DOISearch in Google Scholar

[27] Wu Z, Wang X, Chen Y, Cai Y, Deng J. Assessing river water quality using water quality index in Lake Taihu Basin, China. Sci Total Environ. 2018;612:914-22. DOI: 10.1016/j.scitotenv.2017.08.293.10.1016/j.scitotenv.2017.08.29328886543Open DOISearch in Google Scholar

[28] Ewaid SH, Abed SA, Kadhum SA. Predicting the Tigris River water quality within Baghdad, Iraq by using water quality index and regression analysis. Environ Technol Innov. 2018;11:390-8. DOI: 10.1016/j.eti.2018.06.013.10.1016/j.eti.2018.06.013Search in Google Scholar

[29] Cui F, Park C, Kim M. Application of curve-fitting techniques to develop numerical calibration procedures for a river water quality model. J Environ Manage. 2019;1:109375. DOI:10.1016/j.jenvman.2019.109375.10.1016/j.jenvman.2019.10937531408815Search in Google Scholar

[30] Kim HG, Hong S, Jeong KS, Kim DK, Joo GJ. Determination of sensitive variable regardless of hydrological alteration in artificial neural network model of chlorophyll a: Case study of Nakdong River. Ecol Modell. 2019;398:67-76. DOI: 10.1016/j.ecolmodel.2019.02.003.10.1016/j.ecolmodel.2019.02.003Open DOISearch in Google Scholar

[31] Singh KP, Basant A, Malik A, Jain G. Artificial neural network modeling of the river water quality - A case study. Ecol Modell. 2009;6:888-95. DOI:10.1016/j.ecolmodel.2009.01.004.10.1016/j.ecolmodel.2009.01.004Open DOISearch in Google Scholar

[32] Rokach L, Maimon O. Data Mining With Decision Trees Theory and Applications. Danvers USA: World Scientific Publishing Co. Pte. Ltd; 2008. ISBN: 9789812771711.10.1142/6604Search in Google Scholar

[33] Everaert G, Bennetsen E, Goethals PLM. An applicability index for reliable and applicable decision trees in water quality modelling. Ecol Inf. 2016;32:1-6. DOI: 10.1016/j.ecoinf.2015.12.004.10.1016/j.ecoinf.2015.12.004Open DOISearch in Google Scholar

[34] Bostanmaneshrad F, Partani S, Noori R, Nachtnebel HP, Berndtsson R, Adamowski JF. Relationship between water quality and macro-scale parameters (landuse, erosion, geology, and population density) in the Siminehrood River Basin. Sci Total Environ. 2018;639:1588-600. DOI: 10.1016/j.scitotenv.2018.05.244.10.1016/j.scitotenv.2018.05.24429929321Open DOISearch in Google Scholar

eISSN:
1898-6196
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Chemie, Nachhaltige Chemie, Technik, Elektrotechnik, Energietechnik, Biologie, Ökologie