Zitieren

[1] Liu R, Lal R. Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Sci Total Environ. 2015;514:131-139. DOI: 10.1016/j.scitotenv.2015.01.104.10.1016/j.scitotenv.2015.01.10425659311Open DOISearch in Google Scholar

[2] Duhan JS, Kumar R, Kumar N, Kaur P, Nehra K, Duhan S. Nanotechnology: The new perspective in precision agriculture. Biotechnol Rep (Amst). 2017;15:1-23. DOI: 10.1016/j.btre.2017.03.002.10.1016/j.btre.2017.03.002545408628603692Open DOISearch in Google Scholar

[3] Taran NYu, Gonchar OM, Lopatko KG, Batsmanova LM, Patyka MV, Volkogon MV. The effect of colloidal solution of molybdenum nanoparticles on the microbial composition in rhizosphere of Cicer arietinum L. Nanoscale Res Lett. 2014;9(1):289. DOI: 10.1186/1556-276X-9-289.10.1186/1556-276X-9-289408523025024677Open DOISearch in Google Scholar

[4] Mhamdi A, Queval G, Chaouch S, Vanderauwera S, Breusegem FV, Noctor G. Catalase function in plants: a focus on Arabidopsis mutants as stress-mimic models. J Experiment Bot. 2010;61(15):4197-4220. DOI: 10.1093/jxb/erq282.10.1093/jxb/erq28220876333Open DOISearch in Google Scholar

[5] Tanase C, Popa V. Peroxidase, superoxide-dismutase and catalase activity in corn plants developed under the influence of polyphenolic compounds and deuterium depleted water. A A I Cuza Univ, Sect IIa Genet Mol Biol. 2014;15(1):7-12. http://www.gbm.bio.uaic.ro/index.php/gbm/article/view/1098.Search in Google Scholar

[6] Bakalova S, Nikolova A, Nedeva D. Isoenzyme profiles of peroxidase, catalase and superoxide dismutase as affected by dehydration stress and ABA during germination of wheat seeds. Bulg J Plant Physiol. 2004;30(1-2):64-77. https://journals4free.com/link.jsp?l=16815924.Search in Google Scholar

[7] Choudhury S, Panda P, Sahoo L, Panda SK. Reactive oxygen species signaling in plants under abiotic stress. Plant Signal Behav. 2013;8(4):e23681. DOI: 10.4161/psb.23681.10.4161/psb.23681703028223425848Open DOISearch in Google Scholar

[8] Soto P, Gaete H, Hidalgo ME Assessment of catalase activity, lipid peroxidation, chlorophyll-a, and growth rate in the freshwater green algae Pseudokirchneriella subcapitata exposed to copper and zinc. Lat Am J Aquat Res. 2011;39(2):280-285. DOI: 10.3856/vol39-issue2-fulltext-9.10.3856/vol39-issue2-fulltext-9Open DOISearch in Google Scholar

[9] Azooz MM, Abou-Elhamd MF, Al-Fredan MA. Biphasic effect of copper on growth, proline, lipid peroxidation and antioxidant enzyme activities of wheat (Triticum aestivum cv. Hasaawi) at early growing stage. Aust J Crop Sci. 2012;6(4):688-694. https://www.researchgate.net/publication/231168321_Biphasic_effect_of_copper_on_growth_proline_lipid_peroxidation_and_antioxidant_enzyme_activities_of_wheat_Triticum_aestivum_cv_Hasaawi_at_early_growing_stage.Search in Google Scholar

[10] Luhova L, Lebeda A, Hedererova, Pec P. Activities of amino oxidase, peroxidase and catalase in seedlings of Pisum sativum L. under different light conditions. Plant Soil Environ. 2003;49(4):151-157. http://www.agriculturejournals.cz/publicFiles/52843.pdf.10.17221/4106-PSESearch in Google Scholar

[11] Weisany W, Sohrabi Y, Heidari G, Siosemardeh A, Ghassemi-Golezani K. Changes in antioxidant enzymes activity and plant performance by salinity stress and zinc application in soybean (Glycine max L.). Plant Omics. 2012;5(2):60-67. http://www.pomics.com/sohrabi_5_2_2012_60_67.pdf.Search in Google Scholar

[12] Stratu A, Olteanu Z, Peptanariu M, Zamfirache MM The intensity of respiration and the activity of some oxide - reductases in seeds of pastinaca sativa l. treated with ultrasounds. An. ştiinţifice Univ “Al. I. Cuza” Iaşi Tomul LI, s. II a. Biol Vegetală., 2005;51:65-68. http://www.bio.uaic.ro/publicatii/anale_vegetala/issue/2005/09-2005.pdf.Search in Google Scholar

[13] Kyrylenko LV, Patyka VP Fungoid diseases of galega orientalis. Agr Microbiol. 2016;24:52-58. http://www.sg-microb.ho.ua/arh/pdf24/SM24_08EN.pdf.10.35868/1997-3004.24.52-58Search in Google Scholar

[14] Second International Phytoplasmologist Working Group Meeting, Neustadt an der Weinstraße, Germany. 2011;12(15):303. www.bulletinofinsectology.org/.../insectology64-Supplement-2011.pdfSearch in Google Scholar

[15] Gulyaeva AB, Tokovenko IP, Korobkova KS, Patyka VP. Status and activity of the photosynthetic apparatus of wheat plants affected phytomycoplasmoses with phytohormones foliar treatment. J Sci World. 2015;10(26):52-56. http://scienceph.ru/d/413259/d/scienceandworldno10(26)octobervol.i_1.pdf.Search in Google Scholar

[16] Henriques FS. Leaf chlorophyll fluorescence: background and fundamentals for plant biologists. Bot Rev. 2009;75:249-270. DOI: 10.10071/s12229-0099035y.10.10071/s12229-0099035yOpen DOISearch in Google Scholar

[17] Misra AN, Misra M, Singh R. Chlorophyll Fluorescence in Plant Biology. Biophysics. In: Misra AN, editor. 2012;7:171-192. http://www.intechopen.com/books/biophysics/chlorophyll-fluorescence-in-plant-biology.Search in Google Scholar

[18] Papageorgiou GC, Govindjee G. Chlorophyll a Fluorescence: A Signature of Photosynthesis. In: Papageorgiou GC, Govindjee G, editors Netherlands: Springer. 2004. http://www.springer.com/gp/book/9781402032172#.10.1007/978-1-4020-3218-9Search in Google Scholar

[19] Shavanova KE, Marchenko OA, Taran MV, Starodub MF. Express estimation of resistant the horse chestnut to the influence cameraria ohridella desch. & dim. By using the method of the induction of chlorophyll fluorescence. Sci. Herald NULES. Ukr Ser: Biol Biotechnol Ecol. 2014;204:1-10. http://journals.nubip.edu.ua/index.php/Biologiya/article/view/4734.Search in Google Scholar

[20] Stirbet A, Govindjee G. On the relation between the Kautsky effect (chlorophyll a fluorescence induction) and Photosystem II: Basics and applications of the OJIP fluorescence transient. J Photoch Photobiol. B. 2011;104(1-2):236-257. DOI: 10.1016/j.jphotobiol.2010.12.010.10.1016/j.jphotobiol.2010.12.01021295993Open DOISearch in Google Scholar

[21] Stirbet A, Govindjee G. Chlorophyll a fluorescence induction: a personal perspective of the thermal phase, the J-I-P rise. Photosynth Res. 2012;113:15-61. DOI: 10.1007/s11120-012-9754-5.10.1007/s11120-012-9754-522810945Open DOISearch in Google Scholar

[22] Żurek G, Rybka K, Pogrzeba M, Krzyżak J, Prokopiuk K. Chlorophyll a fluorescence in evaluation of the effect of heavy metal soil contamination on perennial grasses. PLoS One. 2014;9(3):e91475. DOI: 10.1371/journal.pone.0091475.10.1371/journal.pone.0091475395469724633293Search in Google Scholar

[23] Adamovics A, Dubrovskis V, Plume I. Galega for fodder and biogas production. 13th Int Conf of Forage Conservation. Nitra, Slovakia. 2008:170-171. https://www.cabdirect.org/cabdirect/abstract/20143176638.Search in Google Scholar

[24] Peiretti PG, Gai F. Chemical composition, nutritive value, fatty acid and amino acid contents of Galega officinalis L. during its growth stage and in regrowth. Anim Feed Sci Tech. 2006;130(3-4):257-267. DOI: 10.1016/j.anifeedsci.2006.01.007.10.1016/j.anifeedsci.2006.01.007Open DOISearch in Google Scholar

[25] Slepetys J. Influence of cutting and management regimes on Fodder galega for forage and seed production. Agro Research. 2010;8(Sp.Iss.III):711-720. http://agronomy.emu.ee/vol08Spec3/p08s325.pdf.Search in Google Scholar

[26] Slepetys J, Kadziuliene Z, Sarunaite L, Tilvikiene V, Kryzeviciene A. Biomass potential of plants grown for bioenergy production. Proc Intern Sci Conf: Renewable Energy and Energy Efficiency, Growing and Processing Technologies of Energy Crops. 2012;66-72. http://llufb.llu.lv/conference/Renewable_energy_energy_efficiency/Latvia_Univ_Agriculture_REEE_conference_2012.pdfSearch in Google Scholar

[27] Patyka V, Buletsa N, Pasichnyk L, Zhitkevich N, Kalinichenko A, Gnatiuk T, et al. Specifics of pesticides effects on the phytopathogenic bacteria. Ecol Chem Eng S 2016;23(2):311-331, DOI: 10.1515/eces-2016-002210.1515/eces-2016-0022Open DOISearch in Google Scholar

[28] Jeske M, Pańka D, Pala D, Czart A. The effect of different organic fertilization on fungi colonizing plant roots and seeds of fodder galega (Galega orientalis Lam.). 11th Conf Europ Found for Plant Pathology. Kraków: Publ House Krakow Agricult Univ; 2014; 191. http://www.efpp.net/Documents/Krakow/Book%20of%20abstracts_11%20EFPP%20Conference_r.pdf.Search in Google Scholar

[29] Cwalina-Ambroziak B, Koc J. Fungi colonising the aboveground parts of fodder galega (Galega orientalis Lam.) cultivated in pure sowing and mixed with smooth brome-grass (Bromus inermis Leyss.). Acta Agrobot. 2012;58(1):125-133. DOI: 10.5586/aa.2005.018.10.5586/aa.2005.018Open DOISearch in Google Scholar

[30] Hisox JD, Israelstam RJ. The method for the extraction of chlorofill from leaf tissue whithout maceration. Can J Bot. 1979;57(12):1332-1334. DOI: 10.1139/b79-163.10.1139/b79-163Open DOISearch in Google Scholar

[31] Horton P, Ruban A. Molecular design of the photosystem II light-harvesting antenna: Photosynthesis and photoprotection. J Exp Bot. 2004;56(411):1-9. DOI: 10.1093/jxb/eri023.10.1093/jxb/eri02315557295Open DOISearch in Google Scholar

[32] Yamakawa H, van Stokkum IHM, Heber U, Itoh S. Mechanisms of drought-induced dissipation of excitation energy in sun- and shade-adapted drought-tolerant mosses studied by fluorescence yield change and global and target analysis of fluorescence decay kinetics. Photosynth Res. 2017;135(1-3):285-298. DOI: 10.1007/s11120-017-0465-9.10.1007/s11120-017-0465-929151177Open DOISearch in Google Scholar

[33] Ribeiro RV, Santos MG, Pimentel C, Machado EC, Oliveira RF. Can the critical temperature for photochemical damage in common bean plants be changed after a drought event? Bragantia, Campinas. 2015;74(4):374-378. DOI: 10.1590/1678-4499.0141.10.1590/1678-4499.0141Open DOISearch in Google Scholar

eISSN:
1898-6196
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Chemie, Nachhaltige Chemie, Technik, Elektrotechnik, Energietechnik, Biologie, Ökologie