Uneingeschränkter Zugang

Microbiological and Energetic Assessment of the Effects of the Biodrying of Fuel Produced from Waste


Zitieren

[1] Skutan S, Brunner H. Metals in RDF and other high calorific value fractions from mechanical treatment of MSW: Analysis and sampling errors. Waste Manage Res. 2012;30.7:645-655. DOI: 10.1177/0734242X12442740.10.1177/0734242X12442740Open DOISearch in Google Scholar

[2] Malinowski M. Selected properties of an alternative fuel manufactured from municipal solid waste. Infrastruct Ecol Rural Areas. 2013;2013/4/2:125-139. http://www.infraeco.pl/pl/art/a_17260.htm?plik=1520.Search in Google Scholar

[3] Mokrzycki E, Uliasz-Bocheńczyk A, Sarna M. Use of alternative fuels in the Polish cement industry. Appl Energy. 2003;74:101-111. DOI: 10.1016/S0306-2619(02)00136-8.10.1016/S0306-2619(02)00136-8Open DOISearch in Google Scholar

[4] Trezza MA, Scian AN. Waste fuels: their effect on Portland cement clinker. Cement and Concrete Res. 2005;35:438-444. DOI: 10.1016/j.cemconres.2004.05.045.10.1016/j.cemconres.2004.05.045Open DOISearch in Google Scholar

[5] Yuan J, Zhang D, Li Y, Chadwick D, Li G, Li Y, Du L. Effects of adding bulking agents on biostabilization and drying of municipal solid waste. Waste Manage. 2017;62:52-60. DOI: 10.1016/j.wasman.2017.02.027.10.1016/j.wasman.2017.02.027Open DOISearch in Google Scholar

[6] Tom A, Pawels R, Haridas A. Biodrying process: A sustainable technology for treatment of municipal solid waste with high moisture content. Waste Manage. 2016;49:64-71. DOI: 10.1016/j.wasman.2016.01.004.10.1016/j.wasman.2016.01.004Open DOISearch in Google Scholar

[7] Yasuhara A, Amano Y, Shibamoto T. Investigation of the self-heating and spontaneous ignition of refuse-derived fuel (RDF) during storage. Waste Manage. 2010;30:1161-1164. DOI: 10.1016/j.wasman.2009.11.003.10.1016/j.wasman.2009.11.003Open DOISearch in Google Scholar

[8] Gao L, Hirano T. Process of accidental explosions at a refuse derived fuel storage. J Loss Prevent Proc. 2006;19:288-291. DOI: 10.1016/j.jlp.2005.05.016.10.1016/j.jlp.2005.05.016Search in Google Scholar

[9] Hogland W, Marques M. Physical, biological and chemical processes during storage and spontaneous combustion of waste fuel. Resour Conserv Recy. 2003;40:53-69. DOI: 10.1016/S0921-3449(03)00025-9.10.1016/S0921-3449(03)00025-9Open DOISearch in Google Scholar

[10] Hurka M, Malinowski M. Assessment of the use of EWA bioreactor in the process of bio-drying of undersize fraction manufactured from mixed municipal solid waste. Infrastruct Ecol Rural Areas. 2014;2014/IV/1:1127-1136. DOI: 10.14597/infraeco.2014.4.1.083.Search in Google Scholar

[11] Adani F, Baido D, Calcatera E, Genevini P. The influence of biomass temperature on biostabilization-biodrying of municipal solid waste. Bioresour Technol. 2002;83/3:173-179. DOI: 10.1016/S0960-8524(01)00231-0.10.1016/S0960-8524(01)00231-0Open DOISearch in Google Scholar

[12] Sugni M, Calcatera E, Adani F. Biostabilization-biodrying of municipal solid waste by inverting air-flow. Bioresour Technol. 2005;96/12:1331-1337. DOI: 10.1016/j.biortech.2004.11.016.10.1016/j.biortech.2004.11.01615792579Open DOISearch in Google Scholar

[13] Zeng Y, De Guardia A, Ziebal C, De Macedo FJ, Dabert P. Nitrification and microbiological evolution during aerobic treatment of municipal solid wastes. Bioresour Technol. 2012;110:144-152. DOI: 10.1016/j.biortech.2012.01.135.10.1016/j.biortech.2012.01.135Open DOISearch in Google Scholar

[14] Passamani G, Ragazzi M, Torretta V. Potential SRF generation from a closed landfill in Northern Italy. Waste Manage. 2016;47:157-163. DOI: 10.1016/j.wasman.2015.07.024.10.1016/j.wasman.2015.07.024Open DOISearch in Google Scholar

[15] Dębicka M, Żygadło M, Latosińska J. Investigations of bio-drying process of municipal solid waste. Ecol Chem Eng A. 2013;20(12):1461-1470. DOI: 10.2428/ecea.2013.20(12)132.10.2428/ecea.2013.20(12)132Open DOISearch in Google Scholar

[16] Bilgin M, Tulun S. Biodrying for municipal solid waste: volume and weight reduction. Environ Technol. 2015:1-7. DOI: 10.1080/09593330.2015.1006262.10.1080/09593330.2015.100626225571768Open DOISearch in Google Scholar

[17] Dziedzic K, Łapczyńska-Kordon B, Malinowski M, Niemiec M, Sikora J. Impact of aerobic biostabilization and biodrying process of municipal solid waste on minimization of waste deposited in landfills. Chem Process Eng-Inz. 2015;36/4:381-394. DOI: 10.1515/cpe-2015-0027.10.1515/cpe-2015-0027Open DOISearch in Google Scholar

[18] Montejo C, Tonini D, Marquez MC, Astrup TF. Mechanical-biological treatment: Performance and potentials. An LCA of 8 MBT plants including waste characterization. J Environ Manage. 2013;128:661-673. DOI: 10.1016/j.jenvman.2013.05.063.10.1016/j.jenvman.2013.05.06323850761Search in Google Scholar

[19] Frączek K, Ropek D. Impact of the municipal landfill site on bacteria participating in transformation of soil nitrogen. Ecol Chem Eng A. 2011;18(5-6):685-695. http://tchie.uni.opole.pl/ece_a/A_18_5-6/ECE_A_18(5-6).pdf.Search in Google Scholar

[20] Frączek K, Ropek D. Municipal waste dumps as the microbiological threat to the natural environment. Ecol Chem Eng S. 2011;18/1:93-110. http://tchie.uni.opole.pl/ece_s/S18_1/S1_2011.pdf.Search in Google Scholar

[21] Zeng Y, De Guardia A, Ziebal C, De Macedo FJ, Dabert P. Nitrogen dynamic and microbiological evaluation during aerobic treatment of digested sludge. Waste Biomas Valori. 2014;5/3:441-450. DOI: 10.1007/s12649-013-9275-2.10.1007/s12649-013-9275-2Open DOISearch in Google Scholar

[22] Sawamura H, Yamada M, Endo K, Soda S, Ishigaki T, Ike M. Characterization of microorganisms at different landfill depths using carbon-utilization patterns and 16S rRNA gene based T-RFLP. J Biosci Bioeng. 2010;109/2:130-137. DOI: 10.1016/j.jbiosc.2009.07.020.10.1016/j.jbiosc.2009.07.02020129096Open DOISearch in Google Scholar

[23] Giusti L. A review of waste management practices and their impact on human health. Waste Manage. 2009;29(8):2227-2239. DOI: 10.1016/j.wasman.2009.03.028.10.1016/j.wasman.2009.03.02819401266Search in Google Scholar

[24] Yang K, Zhou XN, Yan WA, Hang DR, Steinmann P. Landfills in Jiangsu province, China, and potential threats for public health: Leachate appraisal and spatial analysis using geographic information system and remote sensing. Waste Manage. 2008;28(12):2750-2757. DOI: 10.1016/j.wasman.2008.01.021.10.1016/j.wasman.2008.01.02118396395Open DOISearch in Google Scholar

[25] Franke-Whittle IH, Confalonieri A, Insam H, Schlegelmilch M, Körner I. Changes in the microbial communities during co-composting of digestates. Waste Manage. 2014;34:632-641. DOI: 10.1016/j.wasman.2013.12.009.10.1016/j.wasman.2013.12.009Open DOISearch in Google Scholar

[26] Sakka M, Kimura T, Sakka K. Comparison of microbial consortia in refuse-derived fuel (RDF) preparations between Japan and Germany. Biosci Biotechnol Biochem. 2006;70/12:2868-2873. DOI:10.1271/bbb.60261.10.1271/bbb.60261Open DOISearch in Google Scholar

[27] PN Z 15006:1993: Odpady komunalne stałe -- Oznaczanie składu morfologicznego. (Municipal solid waste - Determination of morphological contents). http://sklep.pkn.pl/pn-z-15006-1993p.html?options=cart.Search in Google Scholar

[28] PN-EN 15407:2011: Refuse derived fuels. - Determination of carbon (C), hydrogen (H) and nitrogen (N) content. https://sklep.pkn.pl/catalogsearch/result/?q=PN-EN%2015407:2011.Search in Google Scholar

[29] PN-G-04584:2001: Paliwa stałe -- Oznaczanie zawartości siarki całkowitej i popiołowej automatycznymi analizatorami (Solid fuels - Determination of total sulfur and ash through the automatic analyzers). https://sklep.pkn.pl/catalogsearch/result/?q=PN-G-04584:2001.Search in Google Scholar

[30] Jakubowski M. Patent application No P121933. Dno napowietrzające kontenerowego urządzenia do obróbki, biosuszenia i kompostowania biofrakcji odpadów komunalnych (Aerating bottom of the container device for biological treatment (biological drying and composting) biofraction of municipal solid waste). 2013.Search in Google Scholar

[31] Velis CA, Longhurst H, Drew R, Smith R, Pollard SJT. Biodrying for mechanical-biological treatment of wastes: A review of process science and engineering. Bioresour Technol. 2009;100(11):2747-2761. DOI: 10.1016/j.biortech.2008.12.026.10.1016/j.biortech.2008.12.026Open DOISearch in Google Scholar

[32] Juniper. Mechanical-Biological Treatment: A Guide for Decision Makers, Processes, Policies and Markets. Juniper Consultancy Services. UK. 2005.Search in Google Scholar

[33] Environment Agency. Eco-deco. http://www.environmentagency.gov.uk/wtd/679004/679026/679079/973452/?version=1&lang=_e (accessed: 15.09.2007).Search in Google Scholar

[34] Cozens P. EfW - an alternative vision. In: Papadimitriou EK, Stentiford EI, editors. Biodegradable and Residual Waste Management: First UK Conference and Exhibition. Harrogate, UK. 2004:464-472.Search in Google Scholar

[35] European Committee for Standardization, 2006. Characterization of Waste - Sampling of Waste Materials - Framework for the Preparation and Application of a Sampling Plan. EN 2006, 14899. http://www.srcosmos.gr/srcosmos/showpub.aspx?aa=14179.Search in Google Scholar

[36] PN-EN 18134-3:2015-11. Solid biofuels - Determination of moisture content - Oven dry method - Part 3: Moisture in general analysis sample. http://sklep.pkn.pl/pn-en-iso-18134-3-2015-11e.html.Search in Google Scholar

[37] PN-ISO 1928:2002: Paliwa stałe -- Oznaczanie ciepła spalania metodą spalania w bombie kalorymetrycznej i obliczanie wartości opałowej. (Solid fuels - Determination of combustion heat by combustion in a bomb calorimeter and calculation of net calorific value). http://sklep.pkn.pl/pn-iso-1928-2002p.html?options=cart.Search in Google Scholar

[38] PN-Z 15008-04:1993: Odpady komunalne stałe -- Badania właściwości paliwowych -- Oznaczanie ciepła spalania i obliczanie wartości opałowej. (Municipal solid waste - Testing of fuel - Determination of the heat of combustion and calculation of net calorific value). http://sklep.pkn.pl/pn-z-15008-04-1993p.html?options=cart.Search in Google Scholar

[39] PN-EN 18122:2016-01. Solid biofuels - Determination of ash content. http://sklep.pkn.pl/pn-en-iso-18122-2016-01e.html.Search in Google Scholar

[40] Giannis A, Makripodis G, Simantiraki F, Somara M, Gidarakos E. Monitoring operational and leachate characteristics of an aerobic simulated landfill bioreactor. Waste Manage. 2008;28:1346-1354. DOI: 10.1016/j.wasman.2007.06.024.10.1016/j.wasman.2007.06.024Open DOISearch in Google Scholar

[41] Borglin SE, Hazen TC, Oldenburg CM. Comparison of aerobic and anaerobic biotreatment of municipal solid waste. J Air Waste Manage Assoc. 2004;54:815-822. DOI: 10.1080/10473289.2004.10470951.10.1080/10473289.2004.10470951Open DOISearch in Google Scholar

[42] Paredes C, Roig A, Bernal MP, Sanchez-Monedero MA, Cegarra J. Evolution of organic matter and nitrogen during co-composting of olive mill wastewater with solid organic wastes. Biol Fertil Soils. 2000;32/3:222-227. DOI: 10.1007/s003740000239.10.1007/s003740000239Open DOISearch in Google Scholar

[43] Paoli L, Pirintsos SA, Kotzabasis K, Pisani T, Navakoudis E, Loppi S. Effects of ammonia from livestock farming on lichen photosynthesis. Environ Pollut. 2010;158/6:2258-2265. DOI: 10.1016/j.envpol.2010.02.008.10.1016/j.envpol.2010.02.008Open DOISearch in Google Scholar

[44] Colomer-Mendoza FJ, Herrera-Prats L, Robles-Martínez F, Gallardo-Izquierdo A, Piña-Guzmán AB. Effect of airflow on biodrying of gardening wastes in reactors. J Environ Sci. 2013;25(5):865-872. DOI: 10.1016/S1001-0742(12)60123-5.10.1016/S1001-0742(12)60123-5Open DOISearch in Google Scholar

[45] Ma J, Zhang L, Li A. Energy-efficient co-biodrying of dewatered sludge and food waste: Synergistic enhancement and variables investigation. Waste Manage. 2016;56:411-422. DOI: 10.1016/j.wasman.2016.06.007.10.1016/j.wasman.2016.06.00727324927Open DOISearch in Google Scholar

[46] Mohammed M, Ozbay I, Durmusoglu E. Bio-drying of green waste with high moisture content. Process Saf Environ. 2017;111:420-427. DOI: 10.1016/j.psep.2017.08.002.10.1016/j.psep.2017.08.002Open DOISearch in Google Scholar

[47] Wolny-Koładka K, Żukowski W. Mixed municipal solid waste hygienisation for refuse-derived fuel production by ozonation in the novel configuration using fluidized bed and horizontal reactor. Waste Biomass Valor. 2017. DOI: 10.1007/s12649-017-0087-7. (in press).10.1007/s12649-017-0087-7.()Open DOISearch in Google Scholar

[48] Mosher D, Anderson RK. Composting sewage sludge by high-rate suction aeration techniques - the process as conducted at Bangor, Maine, and some guidelines of general applicability. Interim Report Number SW-614d. US Government Printing Office. 1977.Search in Google Scholar

[49] Voberková S, Vaverková MD, Burešová A, Adamcová D, Vršanská M, Kynický J, et al. Effect of inoculation with white-rot fungi and fungal consortium on the composting efficiency of municipal solid waste. Waste Manage. 2016;61:157-164. DOI:10.1016/j.wasman.2016.12.039.10.1016/j.wasman.2016.12.039Open DOISearch in Google Scholar

[50] MacGregor ST, Miller FC, Psarianos KM, Finstein MS. Composting process control based on interaction between microbial heat output and temperature. Appl Environ Microbiol. 1981;41:1321-1330. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC243918/pdf/aem00199-0043.pdf.10.1128/aem.41.6.1321-1330.1981Search in Google Scholar

[51] Liang C, Das KC, Mc Clendon RW. The influence of temperature and moisture contents regimes on the aerobic microbial activity of a biosolids composting blend. Bioresour Technol. 2003;86:131-137. DOI: 10.1016/S0960-8524(02)00153-0.10.1016/S0960-8524(02)00153-0Open DOISearch in Google Scholar

[52] Sundberg C, Smars S, Jonsson H. Low pH as an inhibiting factor in the transition from mesophilic to thermophilic phase in composting. Bioresour Technol. 2004;95/2:145-150. DOI: 10.1016/j.biortech.2004.01.016.10.1016/j.biortech.2004.01.01615246438Open DOISearch in Google Scholar

[53] Beck-Friis B, Smars S, Jonsson H, Kirchmann H. Gaseous emissions of carbon dioxide, ammonia and nitrous oxide from organic household waste in a compost reactor under different temperature regimes. J Agr Eng Res. 2001;78(4):423-430. DOI: 10.1006/jaer.2000.0662.10.1006/jaer.2000.0662Open DOISearch in Google Scholar

[54] Strom PF. Effect of temperature on bacterial species diversity in thermophilic solid-waste composting. Appl Environ Microbiol. 1985;50/4:899-905. http://pubmedcentralcanada.ca/pmcc/articles/PMC291766/pdf/aem00230-0168.pdf.10.1128/aem.50.4.899-905.19852917664083885Search in Google Scholar

[55] Atlas RM, Bartha R. Microbial Ecology. Fundamentals and Applications. Menlo Park, California: Addison Wesley Longman; Chapter 8; 1998.Search in Google Scholar

eISSN:
1898-6196
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Chemie, Nachhaltige Chemie, Technik, Elektrotechnik, Energietechnik, Biologie, Ökologie