1. bookVolume 22 (2015): Issue 4 (December 2015)
Zeitschriftendaten
License
Format
Zeitschrift
Erstveröffentlichung
08 Nov 2011
Erscheinungsweise
4 Hefte pro Jahr
Sprachen
Englisch
access type Open Access

Use of Various Zero Valent Irons for Degradation of Chlorinated Ethenes and Ethanes

Online veröffentlicht: 22 Jan 2016
Seitenbereich: 577 - 587
Zeitschriftendaten
License
Format
Zeitschrift
Erstveröffentlichung
08 Nov 2011
Erscheinungsweise
4 Hefte pro Jahr
Sprachen
Englisch

Amongst all of the reducing agents that can be used in environmental remediation, zero valent iron (ZVI) is one of the most common due to its environmental acceptance, high reaction rate, good availability, and long-term stability. Moreover, ZVI mobility, stability and reactivity can be enhanced by the application of a DC electric current, ie electrokinetics (EK). In the study, six various slurries containing different ZVI were tested for their efficacy for chlorinated ethenes and ethanes degradation. Chlorinated compound concentrations, pH, oxidation-reduction potential (ORP) and conductivity were determined during the long-term kinetic test. Kinetic rate constants calculated for the degradation of three chlorinated ethenes (PCE, TCE and cis-DCE) concluded that EK brings substantial contribution to chlorinated compounds degradation. Nano-scale zero valent iron STAR had the highest reaction rates compare to the other ZVI tested. The performed study could serve as a preliminary assessment of various available ZVI before in-situ application.

[1] Bard AJ, Parsons R, Jordan J. Standard Potentials in Aqueous Solution. New York: Marcel Dekker, Inc.; 1985.Search in Google Scholar

[2] Kim S, Park T, Lee W. Enhanced reductive dechlorination of tetrachloroethene by nano-sized mackinawite with cyanocobalamin in a highly alkaline condition. J Environ Manage. 2015;151:378-85. DOI: 10.1016/j.jenvman.2015.01.004.Search in Google Scholar

[3] Kim JH, Tratnyek PG, Chang YS. Rapid dechlorination of polychlorinated dibenzo-p-dioxins by bimetallic and nanosized zerovalent iron. Environ Sci Technol. 2008;42:4106-4112. DOI: 10.1021/es702560k.Search in Google Scholar

[4] Kluyev N, Cheleptchikov A, Brodsky E, Soyfer V, Zhilnikov V. Reductive dechlorination of polychlorinated dibenzo-p-dioxins by zerovalent iron in subcritical water. Chemosphere. 2002;46:1293-1296. DOI: 10.1016/S0045-6535(01)00276-4.Search in Google Scholar

[5] Wang Z, Huang W, Peng P, Fennell DE. Rapid transformation of 1,2,3,4-TCDD by Pd/Fe catalysts. Chemosphere. 2010;78:147-151. DOI: 10.1016/j.chemosphere.2009.09.066.Search in Google Scholar

[6] Elliott DW, Lien H-L, Zhang W-X. Degradation of lindane by zero-valent iron nanoparticles. J Environ Eng. 2009;135:317-24. DOI: 10.1061/(ASCE)0733-9372(2009)135:5(317).Search in Google Scholar

[7] Klimkova S, Cernik M, Lacinova L, Filip J, Jancik D, Zboril R. Zero-valent iron nanoparticles in treatment of acid mine water from in-situ uranium leaching. Chemosphere. 2011;82:1178-84. DOI: 10.1016/j.chemosphere.2010.11.075.Search in Google Scholar

[8] Li S, Wang W, Yan W, Zhang W. Nanoscale zero-valent iron (nZVI) for the treatment of concentrated Cu(II) wastewater: a field demonstration. Environ Sci: Processes Impacts. 2014;16:524-33. DOI: 10.1039/c3em00578j.Search in Google Scholar

[9] Gillham RW, O’Hannesin SF. Enhanced degradation of halogenated aliphatics by zero-valent iron. Ground Water. 1994;32:958-67. DOI: 10.1111/j.1745-6584.1994.tb00935.x.Search in Google Scholar

[10] Liang L, Korte N, Gu B, Puls R, Reeter C. Geochemical and microbial reactions affecting the long-term performance of in-situ ‘iron barriers’. Adv Environ Res. 2000;4:273-86. DOI: 10.1016/S1093-0191(00)00026-5.Search in Google Scholar

[11] Matheson LJ, Tratnyek PG. Reductive dehalogenation of chlorinated methanes by iron metal. Environ Sci Technol. 1994;28:2045-2045. DOI: 10.1021/es00061a012.Search in Google Scholar

[12] Arnold WA, Roberts AL. Pathways and kinetics of chlorinated ethylene and chlorinated acetylene reaction with Fe(0) particles. Environ Sci Technol. 2000;34:1794-805. DOI: 10.1021/es990884q.Search in Google Scholar

[13] Busch J, Meißner T, Potthoff A, Bleyl S, Georgi A, Mackenzie K, et al. A field investigation on transport of carbon-supported nanoscale zero-valent iron (nZVI) in groundwater. J Contam Hydrol. 2015;181:59-68. DOI: 10.1016/j.jconhyd.2015.03.009.Search in Google Scholar

[14] Fu F, Dionysiou DD, Liu H. The use of zero-valent iron for groundwater remediation and wastewater treatment: A review. J Hazard Mater. 2014;267:194-205. DOI: 10.1016/j.jhazmat.2013.12.062.Search in Google Scholar

[15] Lv X, Hu Y, Tang J, Sheng T, Jiang G, Xu X. Effects of co-existing ions and natural organic matter on removal of chromium (VI) from aqueous solution by nanoscale zero valent iron (nZVI)-Fe3O4 nanocomposites. Chem Eng J. 2013;218:55-64. DOI: 10.1016/j.cej.2012.12.026.Search in Google Scholar

[16] Hwang Y, Salatas A, Mines PD, Jakobsen MH, Andersen HR. Graduated characterization method using a multi-well microplate for reducing reactivity of nanoscale zero valent iron materials. Appl Catal B. 2016;181:314-20. DOI: 10.1016/j.apcatb.2015.07.041.Search in Google Scholar

[17] Fan D, Chen S, Johnson RL, Tratnyek PG. Field deployable chemical redox probe for quantitative characterization of carboxymethylcellulose modified nano zerovalent iron. Environ Sci Technol. 2015;49:10589-97. DOI: 10.1021/acs.est.5b02804.Search in Google Scholar

[18] Fan G, Cang L, Qin W, Zhou C, Gomes HI, Zhou D. Surfactants-enhanced electrokinetic transport of xanthan gum stabilized nanoPd/Fe for the remediation of PCBs contaminated soils. Sep Purif Technol. 2013;114:64-72. DOI: 10.1016/j.seppur.2013.04.030.Search in Google Scholar

[19] Gu C, Jia H, Li H, Teppen BJ, Boyd SA. Synthesis of highly reactive subnano-sized zero-valent iron using smectite clay templates. Environ Sci Technol. 2010;44:4258-4263. DOI: 10.1021/es903801r.Search in Google Scholar

[20] Wang W, Zhou M, Jin Z, Li T. Reactivity characteristics of poly(methyl methacrylate) coated nanoscale iron particles for trichloroethylene remediation. J Hazard Mater. 2010;173(1-3):724-730. DOI: 10.1016/j.jhazmat.2009.08.145.Search in Google Scholar

[21] Huang YC, Cheng YW. Electrokinetic-enhanced nanoscale iron reactive barrier of trichloroethylene solubilized by Triton X-100 from groundwater. Electrochim Acta. 2012;86:177-184. DOI: 10.1016/j.electacta.2012.03.048.Search in Google Scholar

[22] Wacławek S, Antoš V, Hrabák P, Černík M, Elliott D. Remediation of hexachlorocyclohexanes by electrochemically activated persulfates. Environ Sci Pollut Res. 2015;4:1-9. DOI: 10.1007/s11356-015-5312-y.Search in Google Scholar

[23] Hrabal J, Černík M, Nosek J. Způsob in-situ sanace horninového prostředí kontaminovaného škodlivými chemickými sloučeninami (In-situ remediation of localities contaminated with harmful chemical compounds). Patent: 304152, 2013.Search in Google Scholar

[24] http://www.nanoiron.cz/en/nanofer-25sSearch in Google Scholar

[25] Virkutyte J, Sillanpää M, Latostenmaa P. Electrokinetic soil remediation - critical overview. Sci Total Environ. 2002;289:97-121. DOI: 10.1016/S0048-9697(01)01027-0.Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo