On uniform exponential splitting for noninvertible evolution operators in Banach Spaces
, und
09. Apr. 2016
Über diesen Artikel
Online veröffentlicht: 09. Apr. 2016
Seitenbereich: 121 - 131
Eingereicht: 01. Nov. 2015
Akzeptiert: 15. Dez. 2015
DOI: https://doi.org/10.1515/awutm-2015-0019
Schlüsselwörter
© 2015 Annals of West University of Timisoara - Mathematics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.
The paper considers the general concept of uniform exponential splitting as a generalization of uniform exponential dichotomy property for evolution operators in Banach spaces.
Two characterizations in terms of integral inequalities of Datko-type respectively Lyapunov functions for uniform exponential splitting of a noninvertible evolution operator with respect to invariant projections families are obtained.