A Computational Approach to Log-Concave Density Estimation
und
22. Apr. 2017
Über diesen Artikel
Online veröffentlicht: 22. Apr. 2017
Seitenbereich: 151 - 166
Eingereicht: 01. Dez. 2014
Akzeptiert: 01. Feb. 2015
DOI: https://doi.org/10.1515/auom-2015-0053
Schlüsselwörter
© 2017
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
Non-parametric density estimation with shape restrictions has witnessed a great deal of attention recently. We consider the maximum-likelihood problem of estimating a log-concave density from a given finite set of empirical data and present a computational approach to the resulting optimization problem. Our approach targets the ability to trade-off computational costs against estimation accuracy in order to alleviate the curse of dimensionality of density estimation in higher dimensions.