The Behaviour of Weak Solutions of Boundary Value Problems for Linear Elliptic Second Order Equations in Unbounded Cone-Like Domains
23. Sept. 2016
Über diesen Artikel
Online veröffentlicht: 23. Sept. 2016
Seitenbereich: 203 - 217
Eingereicht: 24. Feb. 2016
Akzeptiert: 27. Mai 2016
DOI: https://doi.org/10.1515/amsil-2016-0009
Schlüsselwörter
© 2016 Damian Wiśniewski, published by De Gruyter Open
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.
We investigate the behaviour of weak solutions of boundary value problems (Dirichlet, Neumann, Robin and mixed) for linear elliptic divergence second order equations in domains extending to infinity along a cone. We find an exponent of the solution decreasing rate: we derive the estimate of the weak solution modulus for our problems near the infinity under assumption that leading coefficients of the equations do not satisfy the Dini-continuity condition.