1. bookVolumen 30 (2016): Heft 1 (September 2016)
Zeitschriftendaten
License
Format
Zeitschrift
eISSN
2391-4238
Erstveröffentlichung
01 Jan 1985
Erscheinungsweise
2 Hefte pro Jahr
Sprachen
Englisch
access type Uneingeschränkter Zugang

Strong Unique Ergodicity of Random Dynamical Systems on Polish Spaces

Online veröffentlicht: 23 Sep 2016
Volumen & Heft: Volumen 30 (2016) - Heft 1 (September 2016)
Seitenbereich: 129 - 142
Eingereicht: 22 May 2015
Zeitschriftendaten
License
Format
Zeitschrift
eISSN
2391-4238
Erstveröffentlichung
01 Jan 1985
Erscheinungsweise
2 Hefte pro Jahr
Sprachen
Englisch
Abstract

In this paper we want to show the existence of a form of asymptotic stability of random dynamical systems in the sense of L. Arnold using arguments analogous to those presented by T. Szarek in [6], that is showing it using conditions generalizing the notion of tightness of measures. In order to do that we use tightness theory for random measures as developed by H. Crauel in [2].

MSC 2010

[1] Arnold L., Random dynamical systems, Springer Monographs in Mathematics, Springer, Berlin, 1998.10.1007/978-3-662-12878-7Search in Google Scholar

[2] Crauel H., Random probability measures on Polish spaces, Series Stochastics Monographs, Vol. 11, Taylor & Francis, London, 2002.10.1201/b12601Search in Google Scholar

[3] Crauel H., Flandoli F., Attractors for random dynamical systems, Probab. Theory Relat. Fields 100 (1994), 365–393.10.1007/BF01193705Search in Google Scholar

[4] Lasota A., Yorke J.A., Lower bound technique for Markov operators and iterated function systems, Random Comput. Dynam. 2 (1994), 41–77.Search in Google Scholar

[5] Szarek T., The stability of Markov operators on Polish spaces, Studia Math. 143 (2000), 145–152.10.4064/sm-143-2-145-152Search in Google Scholar

[6] Szarek T., Invariant measures for non-expansive Markov operators on Polish spaces, Dissertationes Math. 415 (2003), 62 pp.10.4064/dm415-0-1Search in Google Scholar

[7] Valadier M., Young measures, in: Methods of Nonconvex Analysis (Varrenna 1989), Lecture Notes in Math. 1446, Springer, Berlin, 1990, pp. 152–188.Search in Google Scholar

Empfohlene Artikel von Trend MD

Planen Sie Ihre Fernkonferenz mit Scienceendo