Zitieren

Almeida, R. and Torres, D.F.M. (2011). Necessary and sufficient conditions for the fractional calculus of variations with Caputo derivatives, Communications in Nonlinear Science and Numerical Simulation 16(3): 1490-1500.10.1016/j.cnsns.2010.07.016Search in Google Scholar

Baeumer, B., Kurita, S. and Meerschaert, M. (2005). Inhomogeneous fractional diffusion equations, Fractional Calculus and Applied Analysis 8(4): 371-386.Search in Google Scholar

Balachandran, K. and Divya, S. (2014). Controllability of nonlinear implicit fractional integrodifferential systems, International Journal of Applied Mathematics and Computer Science 24(4): 713-722, DOI: 10.2478/amcs-2014-0052.10.2478/amcs-2014-0052Search in Google Scholar

Balachandran, K. and Kokila, J. (2012). On the controllability of fractional dynamical systems, International Journal of Applied Mathematics and Computer Science 22(3): 523-531, DOI: 10.2478/v10006-012-0039-0.10.2478/v10006-012-0039-0Search in Google Scholar

Bartecki, K. (2013). A general transfer function representation for a class of hyperbolic distributed parameter systems, International Journal of Applied Mathematics and Computer Science 23(2): 291-307, DOI: 10.2478/amcs-2013-0022.10.2478/amcs-2013-0022Search in Google Scholar

Caponetto, R., Dongola, G., Fortuna, L. and Petras, I. (2010). Fractional, order systems: Modeling and control applications, in L.O. Chua (Ed.), World Scientific Series on Nonlinear Science, University of California, Berkeley, CA, pp. 1-178.10.1142/7709Search in Google Scholar

Curtain, R.F. and Zwart, H. (1995). An Introduction to Infinite- Dimensional Linear Systems Theory, Springer-Verlag, New York, NY.10.1007/978-1-4612-4224-6Search in Google Scholar

Das, S. (2010). Functional Fractional Calculus for System Identification and Control, Springer, Berlin.10.1007/978-3-642-20545-3_10Search in Google Scholar

Dlugosz, M. and Skruch, P. (2015). The application of fractional-order models for thermal process modelling inside buildings, Journal of Building Physics 1(1): 1-13.Search in Google Scholar

Dzielinski, A., Sierociuk, D. and Sarwas, G. (2010). Some applications of fractional order calculus, Bulletin of the Polish Academy of Sciences: Technical Sciences 58(4): 583-592.10.2478/v10175-010-0059-6Search in Google Scholar

Evans, K.P. and Jacob, N. (2007). Feller semigroups obtained by variable order subordination, Revista Matematica Complutense 20(2): 293-307.10.5209/rev_REMA.2007.v20.n2.16482Search in Google Scholar

Gal, C. and Warma, M. (2016). Elliptic and parabolic equations with fractional diffusion and dynamic boundary conditions, Evolution Equations and Control Theory 5(1): 61-103.10.3934/eect.2016.5.61Search in Google Scholar

Kaczorek, T. (2011). Selected Problems of Fractional Systems Theory, Springer, Berlin.10.1007/978-3-642-20502-6Search in Google Scholar

Kaczorek, T. (2016). Reduced-order fractional descriptor observers for a class of fractional descriptor continuous-time nonlinear systems, International Journal of Applied Mathematics and Computer Science 26(2): 277-283, DOI: 10.1515/amcs-2016-0019.10.1515/amcs-2016-0019Search in Google Scholar

Kaczorek, T. and Rogowski, K. (2014). Fractional Linear Systems and Electrical Circuits, Białystok University of Technology, Białystok.10.1007/978-3-319-11361-6Search in Google Scholar

Kochubei, A. (2011). Fractional-parabolic systems, arXiv: 1009.4996 [math.ap], (reprint).Search in Google Scholar

Mitkowski, W. (1991). Stabilization of Dynamic Systems, WNT, Warsaw, (in Polish).Search in Google Scholar

Mitkowski, W. (2011). Approximation of fractional diffusion-wave equation, Acta Mechanica et Automatica 5(2): 65-68.Search in Google Scholar

N’Doye, I., Darouach, M., Voos, H. and Zasadzinski, M. (2013). Design of unknown input fractional-order observers for fractional-order systems, International Journal of Applied Mathematics and Computer Science 23(3): 491-500, DOI: 10.2478/amcs-2013-0037.10.2478/amcs-2013-0037Search in Google Scholar

Obraczka, A. (2014). Control of Heat Processes with the Use of Non-integer Models, Ph.D. thesis, AGH University of Science and Technology, Kraków.Search in Google Scholar

Oprzedkiewicz, K. (2003). The interval parabolic system, Archives of Control Sciences 13(4): 415-430.Search in Google Scholar

Oprzedkiewicz, K. (2004). A controllability problem for a class of uncertain parameters linear dynamic systems, Archives of Control Sciences 14(1): 85-100.Search in Google Scholar

Oprzędkiewicz, K. (2005). An observability problem for a class of uncertain-parameter linear dynamic systems, International Journal of Applied Mathematics and Computer Science 15(3): 331-338.Search in Google Scholar

Ostalczyk, P. (2012). Equivalent descriptions of a discrete-time fractional-order linear system and its stability domains, International Journal of Applied Mathematics and Computer Science 22(3): 533-538, DOI: 10.2478/v10006-012-0040-7.10.2478/v10006-012-0040-7Search in Google Scholar

Pazy, A. (1983). Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer, New York, NY.10.1007/978-1-4612-5561-1Search in Google Scholar

Podlubny, I. (1999). Fractional Differential Equations, Academic Press, San Diego, CA.Search in Google Scholar

Popescu, E. (2010). On the fractional Cauchy problem associated with a Feller Semigroup, Mathematical Reports 12(2): 181-188.Search in Google Scholar

Sierociuk, D., Skovranek, T.,Macias,M., Podlubny, I., Petras, I., Dzielinski, A. and Ziubinski, P. (2015). Diffusion process modeling by using fractional-order models, Applied Mathematics and Computation 257(1): 2-11.10.1016/j.amc.2014.11.028Search in Google Scholar

Szekeres, B.J. and Izsak, F. (2014). Numerical solution of fractional order diffusion problems with Neumann boundary conditions, preprint, arXiv: 1411.1596, [math.NA], (preprint).Search in Google Scholar

Yang, Q., Liu, F. and Turner, I. (2010). Numerical methods for fractional partial differential equations with Riesz space fractional derivatives, Applied Mathematical Modelling 34(1): 200-218.10.1016/j.apm.2009.04.006Search in Google Scholar

eISSN:
2083-8492
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Mathematik, Angewandte Mathematik