Uneingeschränkter Zugang

Effect of Arbuscular Mycorrhizal Fungi on Chemical Constituents in Cotton/Alfalfa Mixed Culture

   | 09. Sept. 2017

Zitieren

ARNON, D.I. 1949. Copper enzymes in isolated chloroplasts: Polyphenoloxidase in Beta vulgaris. In Plant Physiology, vol. 24, pp. 1–15.Search in Google Scholar

BOHRER, G. – KAGAN-ZUR, V. – ROTH-BEJERANO, N. – WARD, D. – BECK, G. – BONIFACIO, E. 2003. Effects of different Kalahari-desert VA mycorrhizal communities on mineral acquisition and depletion from the soil by host plants. In Journal of Arid Environments, vol. 55, pp. 193–208. DOI: 10.1016/S0140-1963(03)00047-810.1016/S0140-1963(03)00047-8Search in Google Scholar

CLARK, R.B. – ZETO, S.K. 2000. Mineral acquisition by arbuscular mycorrhizal plants. In Journal of Plant Nutrition, vol. 23, pp. 867–902. http://dx.doi.org/10.1080/0190416000938206810.1080/01904160009382068Search in Google Scholar

DERELLE, D. – COURTY, P.E. – DAJOZ, I. – DECLERCK, S. – Van AARLE, I.M. – CARMIGNAC, D. – GENET, P. 2015. Plant identity and density can influence arbuscular mycorrhizal fungi colonization, plant growth, and reproduction investment in coculture. In Botany, vol. 93, no. 7, pp. 405–412. https://doi.org/10.1139/cjb-2014-018010.1139/cjb-2014-0180Search in Google Scholar

DAVIES, J. – CALDERON, M.C. – HUAMAN, Z. 2005. Influence of arbuscular mycorrhizae indigenous to peru and a flavonoid on growth, yield, and leaf elemental concentration of yungay potatoes. In HortScience, vol. 40, pp. 381–385.10.21273/HORTSCI.40.2.381Search in Google Scholar

FUKAI, S. – TRENBATH, B.R. 1993. Processes determining intercrop productivity and yields of component crops. In Field Crops Research, vol. 34, pp. 247–271. https://doi.org/10.1016/0378-4290(93)90117-610.1016/0378-4290(93)90117-6Search in Google Scholar

GAO, Y. – WU, P.T. – ZHAO, X.N. – WANG, Z.K. 2014. Growth, yield, and nitrogen use in the wheat/maize intercropping system in an arid region of north western China. In Field Crops Research, vol. 167, pp. 19–30. DOI: 10.1016/j.fcr.2014.07.00310.1016/j.fcr.2014.07.003Search in Google Scholar

GHOSH, P.K. – MANNA, M.C. – BANDYOPADHYAY, K.K. – AJAY, A.K. – TRIPATHI, R.H. – WANJARI, KM. et al. 2006. Interspecific interaction and nutrient use in soybean/sorghum intercropping system. In Agronomy Journal, vol. 98, pp. 1097–1108. http://dx.doi.org/10.2134/agronj2005.032810.2134/agronj2005.0328Search in Google Scholar

GIOVANNETTI, M. – MOSSE, B. 1980. An evaluation of techniques for measuring vesicular-arbuscular mycorrhizal infection in roots. In New Phytologist, vol. 84, pp. 489–499. DOI: 10.1111/j.1469-8137.1980.tb04556.x10.1111/j.1469-8137.1980.tb04556.xSearch in Google Scholar

HAUGGAARD-NIELSEN, H. – GOODING, M. – AMBUS, P. – CORRE-HELLOU, G. – CROZAT, Y. – DAHLMANN, C. et al. 2009. Pea-barley intercropping for efficient symbiotic N2-fixation, soil N acquisition and use of other nutrients in European organic cropping systems. In Field Crops Research, vol. 113, pp. 64–71. DOI: 10.1016/j.fcr.2009.04.00910.1016/j.fcr.2009.04.009Search in Google Scholar

van der HEIJDEN, M.G.A. – HORTON, T.R. 2009. Socialism in soil? The importance of mycorrhizal fungal networks for facilitation in natural ecosystems. In Journal of Ecology, vol. 97, pp. 1139–1150. DOI: 10.1111/j.1365-2745.2009.01570.x10.1111/j.1365-2745.2009.01570.xSearch in Google Scholar

HERBERT, S.J. – PUTNAM, D.H. – POOS-FLOYD, M.I. – VARGAS, A. – CREIGHTON J.F. 1984. Forage yield of intercropped corn and soybean in various planting patterns. In Agronomy Journal, vol. 76, pp. 507–510. DOI:10.2134/agronj1984.00021962007600040001x10.2134/agronj1984.00021962007600040001xSearch in Google Scholar

IBRAHIM, M. 2010. Influence of arbuscular mycorrhizal fungi (AMF) on the nutrition of the cotton (Gossypium hirsutum L.) and its tolerance to water stress. PhD, Liege-Gembloux Agro-BioTech. Belgium.Search in Google Scholar

JIA, Y. – GRAY, V.M. – STRAKER, C.J. 2004. The Influence of rhizobium and arbuscular mycorrhizal fungi on nitrogen and phosphorus accumulation by Viciafaba. In Annals of Botany, vol. 94, pp. 251–258. DOI: 10.1093/aob/mch13510.1093/aob/mch135Search in Google Scholar

JONGSCHAAP, R.E.E. – BOOIJ, R. 2004. Spectral measurements at different spatial scales in potato: Relating leaf, plant and canopy nitrogen status. In International Journal of Applied Earth Observation and Geoinformation, vol. 5, pp. 205–218. https://doi.org/10.1016/j.jag.2004.03.00210.1016/j.jag.2004.03.002Search in Google Scholar

KHUDER, A. ‒ SAWAN, M.KH. ‒ KARJOU, J. ‒ RAZOUK, A.K. 2009. Determination of trace elements in Syrian medicinal plants and their infusions by energy dispersive X-ray fluorescence and total reflection X-ray fluorescence spectrometry. In Spectrochimica Acta Part B, vol. 64, pp. 721–725. DOI: 10.1016/j.sab.2009.05.02010.1016/j.sab.2009.05.020Search in Google Scholar

KLIRONOMOS, J.N. 2003. Variation in plant response to native and exotic arbuscular mycorrhizal fungi. In Ecology, vol. 84, pp. 2292–2301. DOI: 10.1890/02-041310.1890/02-0413Search in Google Scholar

KULANDAIVEL, S.R. – BHOOPATHI, KUMAR, P. – GURUMURTHY, S. 2001. Effect of planting pattern on cotton-based intercropping system. In Annals of Agricultural Research, vol. 22, no 1, pp 64–66.Search in Google Scholar

LIU, R.J. – SHEN, C.Y. – QIU, W.F. 1994. The effect of VAM fungi on growth and yield of cotton. In Acta Agriculturae-Universitatis Pekinensis, vol. 20, pp. 88–91.Search in Google Scholar

MOHAMMAD, M.J. – PAN, W.L. – KENNEDY, A.C. 2005. Chemical alteration of the rhizosphere of the mycorrhizal-colonized wheat root. In Mycorrhiza, vol. 15, pp. 259–266. DOI: 10.1007/s00572-004-0327-010.1007/s00572-004-0327-0Search in Google Scholar

MOSSE, B. 1986. Mycorrhiza in a sustainable agriculture. In Biology Agriculture and Horticulture, vol. 3, pp.143–152.Search in Google Scholar

McDONALD, P. – HENDERSON, A.R. – HERO, S.J.E. 1991. The Biochemistry of Silage. Marlow, UK : Chalcombe publications, pp. 9–340.Search in Google Scholar

NAJAFI, N. – MOSTAFAEI, M. – DABBAGH, M.N.A – OUSTAN, S.H. 2013. Effect of intercropping and farmyard manure on the growth, yield and protein concentration of corn, bean and bitter vetch. In Journal of Agricultural Science, vol. 23, no.1, pp. 99–116.Search in Google Scholar

PARMAR, P. – PATEL, M.J. – DAVE, B. – SUBRAMANIAN, R.B. 2012. Nickel accumulation by Colocassia esculentum and its impact on plant growth and physiology. In African Journal of Agricultural Research, vol. 7, no. 24, pp. 3579–3587.Search in Google Scholar

PELLEGRINO, E. – BEDINI, S. 2014. Enhancing ecosystem services in sustainable agriculture: biofertilization of chickpea (Cicer arietinum L.) by arbuscular mycorrhizal fungi. In Soil Biology and Biochemistry, vol. 68, pp. 429–439. DOI: 10.1016/j.soilbio.2013.09.03010.1016/j.soilbio.2013.09.030Search in Google Scholar

REIJNTJES, C. – HAVERKORT, B. – WATERS-BAYER, A. 1992. Farming for the future, an introduction to low-external-input and sustainable agriculture. London, UK : Macmillan Education Ltd, 250 p.Search in Google Scholar

RENGEL, Z. 1999. Physiological mechanisms underlying differential nutrient efficiency of crop genotypes. In RENGEL, Z. (Ed.) Mineral nutrition of crop. NY : Food Products Press, pp. 227–266.Search in Google Scholar

SAS INSTITUTE INC. 2004. SAS user’s guide: statistics version 9.1.2. SAS Institute Inc, Cary, NC.Search in Google Scholar

SIEVERDING, E. 1991. Vesicular-arbuscular mycorrhiza management in tropical agrosystems. Technical cooperation, Germany : Eschborn. pp. 371.Search in Google Scholar

SIQUEIRA, J.O. – COLOZZI-FILHO, A. – FARIA, F.H.S. – OLIVEIRA E. 1986. Symbiotic effectiveness of vesicular arbuscular mycorrhizal fungal species in cotton. In Revista Brasileira de Ciencia do Solo, vol. 10, pp. 213–218.Search in Google Scholar

SMITH, S.E. – READ, D.J. 1997. Mycorrhizal Symbiosis, 2nd edition. London, UK : Academic Press. pp. 605.Search in Google Scholar

SMITH, S.E. – READ, D.J. 2008. Mycorrhizal Symbiosis, 3rd edition. Cambridge: Academic Press, UK. pp. 787.Search in Google Scholar

SUBRAMANIAN, K.S. – TENSHIA, V. – JAYALAKSHMI, K. – RAMACHANDRAN, V. 2009. Role of arbuscular mycorrhizal fungus (Glomus intraradices) – (fungus aided) in zinc nutrition of maize. In Journal of Agricultural Biotechnology and Sustainable Development, vol. 1, no. 1, pp. 029–038. http://www.academicjournals.org/JABSDSearch in Google Scholar

TILAK, K.V.B.R. – SINGH, C.S. – ROY, N.K – SUBBA RAO, N.S. 1992. Azospirillumbrasilense and Azotobacterchro-coccum inoculum effect on maize and sorghum. In Soil Biology and Biochemistry, vol. 14, pp. 417–418. http://dx.doi.org/10.1016/0038-0717(82)90016-5.10.1016/0038-0717(82)90016-5Search in Google Scholar

TSUBO, M. – WALKER, S. – OGINDO, H.O. 2005. A simulation model of cereal legume intercropping systems for semi-arid regions. Model application. In Field Crops Research, vol. 93, pp. 23–33. DOI:10.1016/j.fcr.2004.09.00310.1016/j.fcr.2004.09.003Search in Google Scholar

VANDERMEER, J.H. 1989. The ecology of intercropping systems. Cambridge : Cambridge university, 237 pp.10.1017/CBO9780511623523Search in Google Scholar

WAHBI, S. – MAGHRAOUIB, T. – HAFIDI, M. – SANGUIN, H. – OUFDOU, K. – PRIN, Y. – DUPONNOIS, R. – GALIANA, A. 2016. Enhanced transfer of biologically fixed N from fababean to intercropped wheat through mycorrhizal symbiosis. In Applied Soil Ecology, vol. 107, pp. 91–98. https://doi.org/10.1016/j.apsoil.2016.05.00810.1016/j.apsoil.2016.05.008Search in Google Scholar

WILLY, R.W. 1990. Resource use in intercropping systems. In Journal of Agriculture Water Management, vol. 17, pp. 215–231. https://doi.org/10.1016/0378-3774(90)90069-B10.1016/0378-3774(90)90069-BSearch in Google Scholar

XIAO, Y. – LI, L. – ZHANG, F. 2004. Effect of root contact on interspecific competition and N transfer between wheat and faba bean using direct and indirect 15N techniques. In Plant and Soil, vol. 262, pp. 45–54. DOI: 10.1023/B:PLSO.0000037019.34719.0d10.1023/B:PLSO.0000037019.34719.0dSearch in Google Scholar

WALDER, F. – NIEMANN, H. – NATARAJAN, M. – LEHMANN, M.F. – BOLLER, T. – WIEMKEN, A. 2012. Mycorrhizal networks: common goods of plants shared under unequal terms of trade. In Plant Physiology, vol. 159, pp. 789–797. https://doi.org/10.1104/pp.112.19572710.1104/pp.112.195727337594122517410Search in Google Scholar

eISSN:
1338-4376
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Biologie, Botanik, Ökologie, andere