Uneingeschränkter Zugang

Inspection of Gas Pipelines Using Magnetic Flux Leakage Technology

 und    | 25. Okt. 2017

Zitieren

1. Ahmad, Z., Principles of corrosion engineering and corrosion control. Butterworth-Heinemann, 2006.10.1016/B978-075065924-6/50004-0Search in Google Scholar

2. Porter P.C., Use of magnetic flux leakage (MFL) for the inspection of pipelines and storage tanks. Proc. SPIE 2454, Nondestructive Evaluation of Aging Utilities (1995), 172–184.10.1117/12.209361Search in Google Scholar

3. Bubenik T.A., Nestleroth J.B., Eiber R.J., and Saffell B.F., Magnetic flux leakage (MFL) technology for natural gas pipeline inspection. Topical report, November 1992.Search in Google Scholar

4. Sutherland J. and Paz H., Advances in in-line inspection technology for pipeline integrity. 5th Annual International Pipeline Congress, Morelia, Mexico, 2000.Search in Google Scholar

5. Park G.S., Park S.H., Analysis of the velocity-induced eddy current in MFL type NDT. IEEE Trans. Magn. 40 (2004), 663–666.Search in Google Scholar

6. Afzal M., Udpa S., Advanced signal processing of magnetic flux leakage data obtained from seamless gas pipeline. NDT&E Int. 35 (2002), 449-457.Search in Google Scholar

7. Piotrowski L., Chmielewski M., Analysis of the magnetic flux leakage signal detected by a pipeline inspection gauge with the help of the continuous wavelet transform. Journal of Electrical Engineering 66 (2015), 182-185.Search in Google Scholar

8. Carvalho A.A., Rebello J.M.A., Sagrilo L.V.S., Camerini C.S., and Miranda I.V.J., MFL signals and artificial neural networks applied to detection and classification of pipe weld defects. NDT&E Int. 36 (2006), 661-667.Search in Google Scholar

9. Usarek Z., Influence of sample geometry, magnetic properties and a method of magnetisation on the spatial distribution of the stray magnetic field.. PhD dissertation (in Polish), Gdańsk University of Technology, 2017.Search in Google Scholar

10. Mandayam S., Udpa L., Udpa S.S., and Lord W., Signal processing for in-line inspection of gas transmission pipelines. Res. Nondestruct. Eval. 8 (1996), 233–247.Search in Google Scholar

11. Lei L., Wang C., Ji F., and Wang Q., RBF-based compensation of velocity effects on MFL signals. Insight 51 (2009), 508–511.Search in Google Scholar

12. Lu S., Feng J., Li F., and Liu J., Precise Inversion for the Reconstruction of Arbitrary Defect Profiles Considering Velocity Effect in Magnetic Flux Leakage Testing. IEEE Trans. Magn. 53 (2017), 1–12.Search in Google Scholar

13. Manual for Determining the Remaining Strength of Corroded Pipelines, Supplement to ASME B31 Code for Pressure Piping. An American National Standard – ASME B31G-2012.Search in Google Scholar

eISSN:
2083-4799
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Materialwissenschaft, Funktionelle und Intelligente Materialien