Uneingeschränkter Zugang

Aortic Valve Geometry Modeling – Review

   | 30. Dez. 2016

Zitieren

1. Thubrikar M. J., Labrosse M. R., Zehr K. J., Robicsek F., Gong G. G., Fowler B. L., Aortic root dilatation may alter the dimensions of the valve leaflets. Eur. J. Cardio-thoracic Surg. 28 (2005) 850-855.Search in Google Scholar

2. Ovcharenko E. A., Klyshnikov K. U., Vlad A. R., Sizova I. N., Kokov A. N., Nushtaev D. V., Yuzhalin A. E., Zhuravleva I. U., Computer-aided design of the human aortic root. Comput. Biol. Med. 54 (2014) 109-115.Search in Google Scholar

3. Dwyer H. A., Matthews P. B., Azadani A., Jaussaud N., Ge L., Guy T. S., Tseng E. E., Computational fluid dynamics simulation of transcatheter aortic valve degeneration. Interact. Cardiovasc. Thorac. Surg. 9 (2009) 301-308.Search in Google Scholar

4. Ovcharenko E. A., Klyshnikov K. U., Yuzhalin A. E., Savrasov G. V., Kokov A. N., Batranin A. V., Ganyukov V. I., Kudryavtseva Y. A., Modeling of transcatheter aortic valve replacement: Patient specific vs general approaches based on finite element analysis. Comput. Biol. Med. 69 (2016) 29-36.Search in Google Scholar

5. Toeg H. D., Abessi O., Al-Atassi T., de Kerchove L., El-Khoury G., Labrosse M., Boodhwani M., Finding the ideal biomaterial for aortic valve repair with ex??vivo porcine left heart simulator and finite element modeling. J. Thorac. Cardiovasc. Surg. (2014) 1-7.10.1016/j.jtcvs.2014.05.004Search in Google Scholar

6. Labrosse M. R., Boodhwani M., Sohmer B., Beller C. J., Modeling leaflet correction techniques in aortic valve repair: A finite element study. J. Biomech. 44 (2011) 2292-2298.Search in Google Scholar

7. Cheng A., Dagum P., Miller D. C., Aortic root dynamics and surgery: from craft to science. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 362 (2007) 1407-1419.10.1098/rstb.2007.2124Search in Google Scholar

8. Hammer P. E., Chen P. C., Del Nido P. J., Howe R. D., Computational model of aortic valve surgical repair using grafted pericardium. J. Biomech. 45 (2012) 1199-1204.Search in Google Scholar

9. Grande-Allen K. J., Cochran R. P., Reinhall P. G., Kunzelman K. S., Finite-element analysis of aortic valve-sparing: Influence of graft shape and stiffness. IEEE Trans. Biomed. Eng. 48 (2000) 647-659.10.1109/10.923783Search in Google Scholar

10. Grande-Allen K. J., Cochran R. P., Reinhall P. G., Kunzelman K. S., Re-creation of sinuses is important for sparing the aortic valve: a finite element study. J. Thorac. Cardiovasc. Surg. 119 (2000) 753-763.10.1016/S0022-5223(00)70011-0Search in Google Scholar

11. Schoenhagen P., Tuzcu E. M., Kapadia S. R., Desai M. Y., Svensson L. G., Three-dimensional imaging of the aortic valve and aortic root with computed tomography: New standards in an era of transcatheter valve repair/implantation. Eur. Heart J. 30 (2009) 2079-2086.Search in Google Scholar

12. Dwyer H. A., Matthews P. B., Azadani A., Ge L., Guy T. S., Tseng E. E. Migration forces of transcatheter aortic valves in patients with noncalcific aortic insufficiency. J. Thorac. Cardiovasc. Surg. 138 (2009) 1227-1233.Search in Google Scholar

13. Totaro P., Morganti S., Ngo Yon C. L., Dore R., Conti M., Auricchio F., Vigano M., Computational finite element analyses to optimize graft sizing during aortic valve-sparing procedure. J Hear. Valve Dis 21 (2012) 141-147.Search in Google Scholar

14. Sacks M. S., Schoen F. J., Collagen fiber disruption occurs independent of calcification in clinically explanted bioprosthetic heart valves. J. Biomed. Mater. Res. 62 (2002) 359-371.Search in Google Scholar

15. Swanson W. M., Clark R. E., Dimensions and Geometric Relationships of the Human Aortic Value as a Function of Pressure. Circ. Res. 35 (1974) 871-882.Search in Google Scholar

16. Labrosse M. R., Beller C. J., Robicsek F., Thubrikar M. J., Geometric modeling of functional trileaflet aortic valves: Development and clinical applications. J. Biomech. 39 (2006) 2665-2672.Search in Google Scholar

17. Labrosse M. R., Lobo K., Beller C. J., Structural analysis of the natural aortic valve in dynamics: From unpressurized to physiologically loaded. J. Biomech. 43 (2010) 1916-1922.Search in Google Scholar

18. Makhijani V. B., Yang H. Q., Dionne P. J., Thubrikar M. J., Three Dimensional Coupled Fluid Structure Simulation of Pericardial Bioprosthetic Aortic Valve Function. ASAIO Jurnal 43 (1997) 387-395.Search in Google Scholar

19. Lim K. H., Candra J., Yeo J. H., Duran C. M. G., Flat or curved pericardial aortic valve cusps: a finite element study. J. Heart Valve Dis. 13 (2004) 792-797.Search in Google Scholar

20. Koch T. M., Reddy B. D., Zilla P., Franz T., Aortic valve leaflet mechanical properties facilitate diastolic valve function. Comput. Methods Biomech. Biomed. Engin. 13 (2010) 225-234.Search in Google Scholar

21. Joda A., Jin Z., Haverich A., Summers J., Korossis S., Multiphysics simulation of the effect of leaflet thickness inhomogeneity and material anisotropy on the stress-strain distribution on the aortic valve. J. Biomech. 49 (2016) 2502-2512.Search in Google Scholar

22. Maxfield M. W., Cleary M. A., Breuer C. K., Tissue-Engineering Heart Valves. Academic Press Chapter 40 (2014) 813-833.Search in Google Scholar

23. De Hart J., Peters G. W. M., Schreurs P. J. G., Baaijens F. P. T., Collagen fibers reduce stresses and stabilize motion of aortic valve leaflets during systole. J. Biomech. 37 (2004) 303-311.Search in Google Scholar

24. Sahasakul Y., Edwards W. D., Naessens J. M., Tajik A. J., Age-related changes in aortic and mitral valve thickness: implications for two-dimensional echocardiography based on an autopsy study of 200 normal human hearts. Am. J. Cardiol. 62 (1988) 424-430.Search in Google Scholar

25. Nicosia M. A., Cochran R. P., Kunzelman K. S., Coupled fluid-structure finite element modeling of the aortic valve and root. Engineering Med. Biol. 2 (2002)1278-1279.Search in Google Scholar

26. Wang L., Korossis S., Ingham E., Fisher J., Jin Z., Computational simulation of oxygen diffusion in aortic valve leaflet for tissue engineering applications. J. Heart Valve Dis. 17 (2008) 700-709.Search in Google Scholar

27. Grande K. J., Cochran R. P., Reinhall P. G., Kunzelman K. S., Stress variations in the human aortic root and valve: the role of anatomic asymmetry. Ann. Biomed. Eng. 26 (1998) 534-545.10.1114/1.122Search in Google Scholar

28. Kunzelman K. S., Grande K. J., David T. E., Cochran R. P., Verrier E. D., Aortic root and valve relationships: Impact on surgical repair. J. Thorac. Cardiovasc. Surg. 107 (1994) 162-170.10.1016/S0022-5223(94)70465-1Search in Google Scholar

29. Vollebergh F. E., Becker E., Minor congenital variations of cusp size in tricuspid aortic valves. Possible link with isolated aortic stenosis. Br. Heart J. 39 (1977) 1006-1011.Search in Google Scholar

30. Cook R. D., Malkus D. S., Plesha M. E., Witt R. J. W., Concept and Applications of Finite Element Analysis. John Wiley & Sons, Inc. (2002)Search in Google Scholar

31. Hammer P. E., Pacak C. A., Howe R. D., del Nido P. J., Straightening of curved pattern of collagen fibers under load controls aortic valve shape. J. Biomech. 47 (2014) 341-346.Search in Google Scholar

32. Ionasec R. I., Voigt I., Georgescu B., Wang Y., Houle H., Vega-Higuera F., Navab N., Comaniciu D., Patient-specific modeling and quantification of the aortic and mitral valves from 4-D cardiac CT and TEE. IEEE Trans. Med. Imaging 29 (2010) 1636-1651.Search in Google Scholar

33. Soncini M., Votta E., Zinicchino S., Burrone V., Mangini A., Lemma M., Antona C., Redaelli A., Aortic root performance after valve sparing procedure: A comparative finite element analysis. Med. Eng. Phys. 31 (2009) 234-243.Search in Google Scholar

34. Morganti S., Valentini A., Favalli V., Serio A., Gambarin F. I., Vella D., Mazzocchi L., Massetti M., Auricchio F., Arbustini E., Aortic root 3D parametric morphological model from 2D-echo images. Comput. Biol. Med. 43 (2013) 2196-2204.Search in Google Scholar

35. Haj-Ali R., Marom G., Ben Zekry S., Rosenfeld M., Raanani E., A general three-dimensional parametric geometry of the native aortic valve and root for biomechanical modeling. J. Biomech. 45 (2012) 2392-2397.Search in Google Scholar

36. Rankin J. S., Dalley A. F., Crooke P. S., Anderson R. H., A hemispherical model of aortic valvar geometry. J. Heart Valve Dis. 17 (2008) 179-186.Search in Google Scholar

37. Lansac E., Lim H. S., Shomura Y., Lim K. H., Rice N. T., Goetz W., Acar C., Duran C. M. G., A four-dimensional study of the aortic root dynamics. Eur. J. Cardio-thoracic Surg. 22 (2002) 497-503.10.1016/S1010-7940(02)00405-0Search in Google Scholar

38. De Hart J., Peters G. W. M., Schreurs P. J. G., Baaijens F. P. T., A three-dimensional computational analysis of fluid-structure interaction in the aortic valve. J. Biomech. 36 (2003) 103-112.Search in Google Scholar

39. Morsi Y. S., Yang W. W., Wong C. S., Das S., Transient fluid-structure coupling for simulation of a trileaflet heart valve using weak coupling. J. Artif. Organs 10 (2007) 96-103.Search in Google Scholar

40. Weinberg E. J., Kaazempur Mofrad M. R., Transient, three-dimensional, multiscale simulations of the human aortic valve. Cardiovasc. Eng. 7 (2007) 140-155.Search in Google Scholar

41. Ranga A., Bouchot O., Mongrain R., Ugolini P., Cartier R., Computational simulations of the aortic valve validated by imaging data: evaluation of valve-sparing techniques. Interact. Cardiovasc. Thorac. Surg. 5 (2006) 373-378.10.1510/icvts.2005.121483Search in Google Scholar

42. Katayama S., Umetani N., Sugiura S., Hisada T., The sinus of Valsalva relieves abnormal stress on aortic valve leaflets by facilitating smooth closure. J. Thorac. Cardiovasc. Surg. 136 (2008) 1528-1535.Search in Google Scholar

43. Carmody C. J., Burriesci G., Howard I. C., Patterson E., An approach to the simulation of fluid-structure interaction in the aortic valve. J. Biomech. 39 (2006) 158-169.Search in Google Scholar

44. Howard I. C., Patterson E., Yoxall A., On the opening mechanism of the aortic valve: some observations from simulations. J. Med. Eng. Technol. 27 (2003) 259-266.Search in Google Scholar

45. Gnyaneshwar R., Kumar R. K., Balakrishnan K. R., Dynamic analysis of the aortic valve using a finite element model. Ann. Thorac. Surg. 73 (2002) 1122-1129.Search in Google Scholar

46. Marom G., Haj-Ali R., Raanani E., Schäfers H. J., Rosenfeld M., A fluid-structure interaction model of the aortic valve with coaptation and compliant aortic root. Med. Biol. Eng. Comput. 50 (2012) 173-182.Search in Google Scholar

47. Marom G., Haj-Ali R., Rosenfeld M., Schäfers H. J., Raanani E., Aortic root numeric model: Annulus diameter prediction of effective height and coaptation in post-aortic valve repair. J. Thorac. Cardiovasc. Surg. 145 (2013) 9-11.Search in Google Scholar

48. Kalyana Sundaram G. B., Balakrishnan K. R., Kumar R. K., Aortic valve dynamics using a fluid structure interaction model – The physiology of opening and closing. J. Biomech. 48 (2015) 1737-1744.Search in Google Scholar

49. Stevanella M., Votta E., Lemma M., Antona C., Redaelli A., Finite element modelling of the tricuspid valve: A preliminary study. Med. Eng. Phys. 32 (2010) 1213-1223.10.1016/j.medengphy.2010.08.013Search in Google Scholar

50. Smuts A. N., Blaine D. C., Scheffer C., Weich H., Doubell A. F., Dellimore K. H., Application of finite element analysis to the design of tissue leaflets for a percutaneous aortic valve. J. Mech. Behav. Biomed. Mater. 4 (2011) 85-98.Search in Google Scholar

51. Burriesci I. C. H. G., Patterson E. A., Influence of anisotropy on the mechanical behaviour of bioprosthetic heart valves. J. Med. Eng. Technol. 23 (1999) 203-215.Search in Google Scholar

52. Li J., Luo X. Y., Kuang Z. B., A nonlinear anisotropic model for porcine aortic heart valves.,” J. Biomech. 34 (2001) 1279-1289.10.1016/S0021-9290(01)00092-6Search in Google Scholar

53. Freed A. D., Einstein D. R., Vesely I., Invariant formulation for dispersed transverse isotropy in aortic heart valves: An efficient means for modeling fiber splay. Biomech. Model. Mechanobiol. 4 (2005) 100-117.10.1007/s10237-005-0069-816133588Search in Google Scholar

54. Patterson E. A., Howard I. C., Thornton M. A., A comparative study of linear and nonlinear simulations of the leaflets in a bioprosthetic heart valve during the cardiac cycle.,” J. Med. Eng. Technol. 20 (1996) 95-108.10.3109/030919096090083878877750Search in Google Scholar

55. Okamoto R. J., Wagenseil J. E., DeLong W. R., Peterson S. J., Kouchoukos N. T., Sundt T. M., Mechanical properties of dilated human ascending aorta. Ann. Biomed. Eng. 30 (2002) 624-635.Search in Google Scholar

56. Ferraresi C., Bertetto M., Mazza L., Maffiodo D., Franco W., One-dimensional experimental mechanical characterisation of porcine aortic root wall. Med. Biol. Eng. Comput. 37 (1999) 202-207.Search in Google Scholar

57. Ferraresi C., Manuello Bertetto A., Mazza L., Franco W., Maffiodo D., Opening mechanics of the aortic root: non homogeneous and non isotropic F.E.M. model of biological structure. Mech. Res. Commun. 25 (1998) 405-413.Search in Google Scholar

58. Azadani A. N., Chitsaz S., Matthews P. B., Jaussaud N., Leung J., Tsinman T., Ge L., Tseng E. E., Comparison of mechanical properties of human ascending aorta and aortic sinuses. Ann. Thorac. Surg. 93 (2012) 87-94.Search in Google Scholar

eISSN:
2083-4799
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Materialwissenschaft, Funktionelle und Intelligente Materialien