Uneingeschränkter Zugang

Plastic Deformation and Softening of the Surface Layer of Railway Wheel

   | 30. Dez. 2015

Zitieren

1. Alwahdi F.A.M., Kapoor A., Franklin F.J.: Subsurface microstructural analysis and mechanical properties of pearlitic rail steels in service. Wear 302 (2013), 1453-1460.Search in Google Scholar

2. Cvetkovski K., Ahlström J.: Characterisation of plastic deformation and thermal softening of the surface layer of railway passenger wheel treads. Wear 300 (2013), 200-204.Search in Google Scholar

3. Murawa F.: Radsätze für Schienenfahrzeuge - grundsätzliche Gedanken zur Dimensionierung. EI - Eisenbahningenieur 55 (1/2004), 40-47.Search in Google Scholar

4. Poschmann I., Heermant C.: Werkstoffe für rollendes Bahnmaterial - Gefüge und mechanische Eigenschaften. EI - Eisenbahningenieur 53 (8/2002), 47-50.Search in Google Scholar

5. Standard: EN 13262+A2 AUGUST 2011Search in Google Scholar

6. Cvetkovski K., Ahlström J., Karlsson B.: Thermal softening of fine pearlitic steel and its effect on the fatigue behaviour. Procedia Engineering 2 (2010), 541-545.Search in Google Scholar

7. Robles Hernándeza F.C. at all: Properties and microstructure of high performance wheels. Wear 271 (2011), 374-381.10.1016/j.wear.2010.10.017Search in Google Scholar

8. Garnham J. E., Davis C. L.: The role of deformed rail microstructure on rolling contact fatigue initiation. Wear 265 (2008), 1363-1372.Search in Google Scholar

9. Peng D., Jones R., Constable T.: A study into crack growth in a railway wheel under thermal stop brake loading spectrum. Engineering Failure Analysis 25 (2012), 280-290.Search in Google Scholar

10. Ahlström J., Karlsson B.: Microstructural evaluation and interpretation of the mechanically and thermally affected zone under railway wheel flats. Wear 232 (1999), 1-14.Search in Google Scholar

11. Ekberga A., Kabo E.: Fatigue of railway wheels and rails under rolling contact and thermal loading-an overview. Wear 258 (2005), 1288-1300.Search in Google Scholar

12. Zerbst U., Madler K., Hintze H.: Fracture mechanics in railway applications--an overview. Engineering Fracture Mechanics 72 (2005), 163-194.Search in Google Scholar

13. Fuoco R., Ferreira M.M., Azevedo C.R.F.: Failure analysis of a cast steel railway wheel. Engineering Failure Analysis 11 (2004), 817-828.Search in Google Scholar

14. SHEN Xiao-hui at all: Austenite Grain Size Evolution in Railway Wheel During Multi-Stage Forging Processes. JOURNAL OF IRON AND STEEL RESEARCH, INTERNATIONAL. 20(3) (2013), 57-65.10.1016/S1006-706X(13)60070-9Search in Google Scholar

15. Miodrag A. at all: Analysis of the spreader track wheels premature damages. Engineering Failure Analysis 20 (2012), 118-136.10.1016/j.engfailanal.2011.11.005Search in Google Scholar

16. Parida N., Das S.K., Tarafder S.: Failure analysis of railroad wheels. Engineering Failure Analysis 16 (2009), 1454-1460.Search in Google Scholar

17. Ahlström J., Karlsson B.: Modelling of heat conduction and phase transformations during sliding of railway wheels. Wear 253 (2002), 291-300.Search in Google Scholar

18. Donzella G. at all: Progressive damage assessment in the near-surface layer of railway wheel-rail couple under cyclic contact. Wear 271 (2011), 408-416.10.1016/j.wear.2010.10.042Search in Google Scholar

19. Peng D., Jones R.: The development of combination mechanical contact and thermal braking loads for railway wheel fatigue analysis. Theoretical and Applied Fracture Mechanics 60 (2012), 10-14.Search in Google Scholar

eISSN:
2083-4799
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Materialwissenschaft, Funktionelle und Intelligente Materialien