Zitieren

1. Budna J, Celichowski P, Karimi P, Kranc W, Bryja A, Ciesiółka S, Rybska M, Borys S, Jeseta M, Bukowska D, Antosik P, Brüssow KP, Bruska M, Nowicki M, Zabel M, Kempisty B. Does Porcine oocytes maturation in vitro is regulated by genes involved in transforming growth factor beta receptor signaling pathway? Adv Cell Biol. 2017;5(1):1-14.10.1515/acb-2017-0001Search in Google Scholar

2. Kranc W, Budna J, Chachuła A, Borys S, Bryja A, Rybska M, Ciesiółka S, Sumelka E, Jeseta M, Brüssow KP, Bukowska D, Antosik P, Bruska M, Nowicki M, Zabel M, Kempisty B. “Cell Migration” Is the Ontology Group Differentially Expressed in Porcine Oocytes Before and After In Vitro Maturation: A Microarray Approach. DNA Cell Biol. 2017;36(4):273-282.10.1089/dna.2016.342528384068Open DOISearch in Google Scholar

3. Kranc W, Celichowski P, Budna J, Khozmi R, Bryja A, Ciesiółka S, Rybska M, Borys S, Jeseta M, Bukowska D, Antosik P, Brüssow KP, Bruska M, Nowicki M, Zabel M, Kempisty B. Positive regulation of macromolecule metabolic process belongs to the main mechanisms crucial for porcine oocytes maturation. Adv Cell Biol. 2017;5(1):15-32.10.1515/acb-2017-0002Search in Google Scholar

4. Ciesiółka S, Bryja A, Budna J, Kranc W, Chachuła A, Bukowska D, Piotrowska H, Porowski L, Antosik P, Bruska M, Brüssow KP, Nowicki M, Zabel M, Kempisty B. Epithelialization and stromalization of porcine follicular granulosa cells during real-time proliferation – a primary cell culture approach. J Biol Regul Homeost Agents. 2016;30(3):693-702.Search in Google Scholar

5. Ciesiółka S, Budna J, Jopek K, Bryja A, Kranc W, Borys S, Jeseta M, Chachuła A, Ziółkowska A, Antosik P, Bukowska D, Brüssow KP, Bruska M, Nowicki M, Zabel M, Kempisty B. Time- and Dose-Dependent Effects of 17 Beta-Estradiol on Short-Term, Real-Time Proliferation and Gene Expression in Porcine Granulosa Cells. Biomed Res Int. 2017;2017:9738640.10.1155/2017/9738640535040228337462Search in Google Scholar

6. Hazzard TM, Xu F, Stouffer RL. Injection of soluble vascular endothelial growth factor receptor 1 into the preovulatory follicle disrupts ovulation and subsequent luteal function in rhesus monkeys. Biol Reprod. 2002;67:1305-1312.10.1095/biolreprod67.4.130512297549Search in Google Scholar

7. Trau HA, Brannstrom M, Curry TE, JR, Duffy DM. Prostaglandin E2 and vascular endothelial growth factor A mediate angiogenesis of human ovarian follicular endothelial cells. Hum Reprod. 2016;31:436-444.10.1093/humrep/dev320471681026740577Search in Google Scholar

8. Li S-H, Hwu Y-M, Lu C-H, Chang H-H, Hsieh C-E, Lee RK-K. VEGF and FGF2 Improve Revascularization, Survival, and Oocyte Quality of Cryopreserved, Subcutaneously-Transplanted Mouse Ovarian Tissues. Int J Mol Sci. 2016;17(8):1-13.Search in Google Scholar

9. Anchordoquy JM, Anchordoquy JP, Testa JA, Sirini MA, Furnus CC. Influence of vascular endothelial growth factor and Cysteamine on in vitro bovine oocyte maturation and subsequent embryo development. Cell Biol Int. 2015;39:1090-1098.10.1002/cbin.1048125879691Search in Google Scholar

10. Masaki T. Endothelins: Homeostatic and Compensatory Actions in the Circulatory and Endocrine Systems. Endocrine Reviews. 1993;14(3):256-268.10.1210/edrv-14-3-2568319594Search in Google Scholar

11. Ko C, Gieske MC, Al-Alem L, Hahn Y, Su W, Gong MC, Iglarz M, Koo Y. Endothelin-2 in ovarian follicle rupture. Endocrinology. 2006;147(4):1770-9.10.1210/en.2005-122816410304Search in Google Scholar

12. Bridges PJ, Jo M, Al Alem L, Na G, Su W, Gong MC, Jeoung M, Ko C. Production and binding of endothelin-2 (EDN2) in the rat ovary: endothelin receptor subtype A (EDNRA)-mediated contraction. Reproduction, fertility, and development. 2010;22(5):780-7.10.1071/RD0919420450830Search in Google Scholar

13. Thomas M, Augustin HG. The role of the Angiopoietins in vascular morphogenesis. Angiogenesis. 2009;12(2):125-37.10.1007/s10456-009-9147-319449109Open DOISearch in Google Scholar

14. Holash J, Maisonpierre PC, Compton D, Boland P, Alexander CR, Zagzag D, Yancopoulos GD, Wiegand SJ. Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF. Science. 1999;284(5422):1994-8.10.1126/science.284.5422.199410373119Search in Google Scholar

15. Hu B, Cheng SY. Angiopoietin-2: development of inhibitors for cancer therapy. Current oncology reports. 2009;11(2):111-6.10.1007/s11912-009-0017-3286710919216842Search in Google Scholar

16. Hata K, Udagawa J, Fujiwaki R, Nakayama K, Otani H, Miyazaki K. Expression of angiopoietin-1, angiopoietin-2, and Tie2 genes in normal ovary with corpus luteum and in ovarian cancer. Oncology. 2002;62(4):340-8.10.1159/00006506612138242Search in Google Scholar

17. Santulli G. Angiopoietin-like proteins: a comprehensive look. Frontiers in endocrinology. 2014;5:410.3389/fendo.2014.00004389953924478758Search in Google Scholar

18. Zhu P, Goh YY, Chin HF, Kersten S, Tan NS. Angiopoietin-like 4: a decade of research. Biosci Rep. 2012;32(3):211-9.10.1042/BSR2011010222458843Search in Google Scholar

19. Mandard S, Zandbergen F, van Straten E, Wahli W, Kuipers F, Müller M, Kersten S. The fasting-induced adipose factor/angiopoietin-like protein 4 is physically associated with lipoproteins and governs plasma lipid levels and adiposity. J Biol Chem. 2006;281:934-944.10.1074/jbc.M50651920016272564Search in Google Scholar

20. Liu Z, Liu C, Hao C, Xue Q, Huang X, Zhang N, Bao H, Qu Q. Aberrant expression of angiopoietin-like proteins 1 and 2 in cumulus cells is potentially associated with impaired oocyte developmental competence in polycystic ovary syndrome. Gynecol Endocrinol. 2016;32(7):557-61.10.3109/09513590.2016.113846326829602Search in Google Scholar

21. Sato H, Takino T, Okada Y, Cao J, Shinagawa A, Yamamoto E, Seiki M. A matrix metalloproteinase expressed on the surface of invasive tumour cells. Nature. 1994;370(6484):61-5.10.1038/370061a08015608Search in Google Scholar

22. Perbal B. NOV (nephroblastoma overexpressed) and the CCN family of genes: structural and functional issues. Mol Pathol. 2001;54(2):57-79.10.1136/mp.54.2.57118700611322167Search in Google Scholar

23. Azoury J, Lee KW, Georget V, Hikal P, Verlhac MH. Symmetry breaking in mouse oocytes requires transient F-actin meshwork destabilization. Development. 2011;138:2903-8.10.1242/dev.06026921653611Search in Google Scholar

24. Chaigne A, Campillo C, Gov NS, Voituriez R, Sykes C, Verlhac MH, Terret ME. A narrow window of cortical tension guides asymmetric spindle positioning in the mouse oocyte. Nat Commun. 2015;6:6027.10.1038/ncomms702725597399Search in Google Scholar

25. Valdenaire O, Lepailleur-Enouf D, Egidy G, Thouard A, Barret A, et al. A fourth isoform of endothelin-converting enzyme (ECE-1) is generated from an additional promoter molecular cloning and characterization. Eur J Biochem. 1999; 264: 341-349.10.1046/j.1432-1327.1999.00602.x10491078Search in Google Scholar

eISSN:
2544-3577
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Biologie, Molekularbiologie, Biochemie