Uneingeschränkter Zugang

Changes in protein patterns of Staphylococcus aureus and Escherichia coli by silver nanoparticles capped with poly (4-styrenesulfonic acid-co-maleic acid) polymer


Zitieren

Gong P, Li H, He X, Wang K, Hu J, Tan W, et al. Preparation and antibacterial activity of Fe3O4@Ag nanoparticles. Nanotechnol. 2007; 18:604–11.GongPLiHHeXWangKHuJTanWet alPreparation and antibacterial activity of Fe3O4@Ag nanoparticlesNanotechnol2007186041110.1088/0957-4484/18/28/285604Search in Google Scholar

Li WR, Xie XB, Shi QS, Duan SS, Ouyang YS, Chen YB. Antibacterial effect of silver nanoparticles on Staphylococcus aureus Biometals. 2011; 24:135–41.LiWRXieXBShiQSDuanSSOuyangYSChenYBAntibacterial effect of silver nanoparticles on Staphylococcus aureusBiometals2011241354110.1007/s10534-010-9381-6Search in Google Scholar

Nakonieczna J, Zdonczyk AR, Kawiak A, Bielawskia KP, Grinholc M. Sub-lethal photodynamic inactivation renders Staphylococcus aureus susceptible to silver nanoparticles. Photochem Photobiol Sci. 2013; 12:1622–7.NakoniecznaJZdonczykARKawiakABielawskiaKPGrinholcMSub-lethal photodynamic inactivation renders Staphylococcus aureus susceptible to silver nanoparticlesPhotochem Photobiol Sci2013121622710.1039/c3pp50039jSearch in Google Scholar

Navarro E, Piccapietra F, Wagner B, Marconi F, Kaegi R, Odzak N, et al. Toxicity of silver nanoparticles to Chlamydomonas reinhardtii Environ Sci Technol. 2008; 42:8959–64.NavarroEPiccapietraFWagnerBMarconiFKaegiROdzakNet alToxicity of silver nanoparticles to Chlamydomonas reinhardtiiEnviron Sci Technol20084289596410.1021/es801785mSearch in Google Scholar

Panacek A, Kvítek L, Prucek R, Kolar M, Vecerova R, Pizúrova N, et al. Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity. J Phys Chem B. 2006; 110:16248–53.PanacekAKvítekLPrucekRKolarMVecerovaRPizúrovaNet alSilver colloid nanoparticles: synthesis, characterization, and their antibacterial activityJ Phys Chem B2006110162485310.1021/jp063826hSearch in Google Scholar

Tenover FC. Mechanisms of antimicrobial resistance in bacteria. Am J Med. 2006; 119:3–10.TenoverFCMechanisms of antimicrobial resistance in bacteriaAm J Med200611931010.1016/j.amjmed.2006.03.011Search in Google Scholar

Rai M, Yadav A, Gade A. Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv. 2009; 27:76–83.RaiMYadavAGadeASilver nanoparticles as a new generation of antimicrobialsBiotechnol Adv200927768310.1016/j.biotechadv.2008.09.002Search in Google Scholar

Guzman M, Dille J, Godet S. Synthesis and antibacterial activity of silver nanoparticles against gram-positive and gram-negative bacteria. Nanomedicine. 2012; 8:37–45.GuzmanMDilleJGodetSSynthesis and antibacterial activity of silver nanoparticles against gram-positive and gram-negative bacteriaNanomedicine20128374510.1016/j.nano.2011.05.007Search in Google Scholar

Feng QL, Wu J, Chen GQ, Cui FZ, Kim TN, Kim JO. A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus J Biomed Mater Res. 2000; 52:662–8.FengQLWuJChenGQCuiFZKimTNKimJOA mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureusJ Biomed Mater Res200052662810.1002/1097-4636(20001215)52:4<662::AID-JBM10>3.0.CO;2-3Search in Google Scholar

Lok CN, Ho CM, Chen R, He QY, Yu WY, Sun H, et al. Proteomic analysis of the mode of antibacterial action of silver nanoparticles. J Proteome Res. 2006; 5:916–24.LokCNHoCMChenRHeQYYuWYSunHet alProteomic analysis of the mode of antibacterial action of silver nanoparticlesJ Proteome Res200659162410.1021/pr0504079Search in Google Scholar

Wigginton NS, de Titta A, Piccapietra F, Dobias J, Nesatyy VJ, Suter MJF, Bernier-Latmani R. Binding of silver nanoparticles to bacterial proteins depends on surface modifications and inhibits enzymatic activity. Environ Sci Technol 2010; 44:2163–8.WiggintonNSdeTitta APiccapietraFDobiasJNesatyyVJSuterMJFBernier-LatmaniRBinding of silver nanoparticles to bacterial proteins depends on surface modifications and inhibits enzymatic activityEnviron Sci Technol2010442163810.1021/es903187sSearch in Google Scholar

Ivask A, ElBadawy A, Kaweeteerawat C, Boren D, Fischer H, Ji Z, et al. Toxicity mechanisms in Escherichia coli vary for silver nanoparticles and differ from ionic silver. ACS Nano. 2014; 8:374–86.IvaskAElBadawyAKaweeteerawatCBorenDFischerHJiZet alToxicity mechanisms in Escherichia coli vary for silver nanoparticles and differ from ionic silverACS Nano201483748610.1021/nn4044047Search in Google Scholar

He T, Liu H, Zhou Y, Yang J, Cheng X, Shi H. Antibacterial effect and proteomic analysis of graphene-based silver nanoparticles on a pathogenic bacterium Pseudomonas aeruginosa Biometals. 2014; 27:673–82.HeTLiuHZhouYYangJChengXShiHAntibacterial effect and proteomic analysis of graphene-based silver nanoparticles on a pathogenic bacterium Pseudomonas aeruginosaBiometals2014276738210.1007/s10534-014-9756-1Search in Google Scholar

Mirzajani F, Askari H, Hamzelou S, Schober Y, Römpp A, Ghassempour A, Spengler B. Proteomics study of silver nanoparticles toxicity on Bacillus thuringiensis Ecotoxicol Environ Saf. 2014; 100:122–30.MirzajaniFAskariHHamzelouSSchoberYRömppAGhassempourASpenglerBProteomics study of silver nanoparticles toxicity on Bacillus thuringiensisEcotoxicol Environ Saf20141001223010.1016/j.ecoenv.2013.10.009Search in Google Scholar

Gambino M, Marzano V, Villa F, Vitali A, Vannini C, Landini P, Cappitelli F. Effects of sublethal doses of silver nanoparticles on Bacillus subtilis planktonic and sessile cells. J Appl Microbiol. 2015; 118:1103–15.GambinoMMarzanoVVillaFVitaliAVanniniCLandiniPCappitelliFEffects of sublethal doses of silver nanoparticles on Bacillus subtilis planktonic and sessile cellsJ Appl Microbiol201511811031510.1111/jam.12779Search in Google Scholar

Qian H, Zhu K, Lu H, Lavoie M, Chen S, Zhou Z, et al. Contrasting silver nanoparticle toxicity and detoxification strategies in Microcystis aeruginosa and Chlorella vulgaris New insights from proteomic and physiological analyses. Sci Total Environ. 2016; 572:1213–21.QianHZhuKLuHLavoieMChenSZhouZet alContrasting silver nanoparticle toxicity and detoxification strategies in Microcystis aeruginosa and Chlorella vulgaris New insights from proteomic and physiological analysesSci Total Environ201657212132110.1016/j.scitotenv.2016.08.039Search in Google Scholar

Zheng X, Wang J, Chen Y, Wei Y. Comprehensive analysis of transcriptional and proteomic profiling reveals silver nanoparticles-induced toxicity to bacterial denitrification. J Hazard Mater. 2018; 344:291–8.ZhengXWangJChenYWeiYComprehensive analysis of transcriptional and proteomic profiling reveals silver nanoparticles-induced toxicity to bacterial denitrificationJ Hazard Mater2018344291810.1016/j.jhazmat.2017.10.028Search in Google Scholar

Gong X, Han, L, Gao J, Gao C. Stability of polyelectrolyte multilayer micropatterns in response to post-treatments. Colloids Surf A: Physicochem Eng Aspects. 2012; 396:299–304.GongXHanLGaoJGaoCStability of polyelectrolyte multilayer micropatterns in response to post-treatmentsColloids Surf A: Physicochem Eng Aspects201239629930410.1016/j.colsurfa.2012.01.013Search in Google Scholar

Tamiyakul H, Tanasupawat S, Dubas ST, Warisnoicharoen W. Antibacterial potential of silver nanoparticles capped with poly (4-styrenesulfonic acid-co-maleic acid) polymer. Adv Mat Res. 2015; 1088:64–8.TamiyakulHTanasupawatSDubasSTWarisnoicharoenWAntibacterial potential of silver nanoparticles capped with poly (4-styrenesulfonic acid-co-maleic acid) polymerAdv Mat Res2015108864810.4028/www.scientific.net/AMR.1088.64Search in Google Scholar

Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951; 193:265–75.LowryOHRosebroughNJFarrALRandallRJProtein measurement with the Folin phenol reagentJ Biol Chem19511932657510.1016/S0021-9258(19)52451-6Search in Google Scholar

Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970; 227:680–5.LaemmliUKCleavage of structural proteins during the assembly of the head of bacteriophage T4Nature1970227680510.1038/227680a0Search in Google Scholar

Jaresitthikunchai J, Phaonakrop N, Roytrakul S, Veeranondha S, San-ngam R, Suvannapruk W, et al. Protein expression of osteoblast as a response to different hydroxyapatite bioceramics. Proceedings of 48th Kasetsart University Annual Conference: Science. 2010 [cited 2014 June 15], Available from: http://kucon.lib.ku.ac.th/Fulltext/KC4805022.pdf.JaresitthikunchaiJPhaonakropNRoytrakulSVeeranondhaSSan-ngamRSuvannaprukWet alProtein expression of osteoblast as a response to different hydroxyapatite bioceramicsProceedings of 48th Kasetsart University Annual Conference: Science2010[cited 2014 June 15], Available fromhttp://kucon.lib.ku.ac.th/Fulltext/KC4805022.pdfSearch in Google Scholar

Johansson C, Samskog J, Sundstrom L, Wadensten H, Bjorkesten L, Flensburg J. Differential expression analysis of Escherichia coli proteins using a novel software for relative quantitation of LC-MS/MS data. Proteomics. 2016; 6:4475–85.JohanssonCSamskogJSundstromLWadenstenHBjorkestenLFlensburgJDifferential expression analysis of Escherichia coli proteins using a novel software for relative quantitation of LC-MS/MS dataProteomics2016644758510.1002/pmic.200500921Search in Google Scholar

Thorsell A, Portelius E, Blennow K, Brinkmalm AW. Evaluation of sample fractionation using microscale liquid-phase isoelectric focusing on mass spectrometric identification and quantitation of proteins in a SILAC experiment. Rapid Commun Mass Spectrom. 2007; 21:771–8.ThorsellAPorteliusEBlennowKBrinkmalmAWEvaluation of sample fractionation using microscale liquid-phase isoelectric focusing on mass spectrometric identification and quantitation of proteins in a SILAC experimentRapid Commun Mass Spectrom200721771810.1002/rcm.2898Search in Google Scholar

Perkins DN, Pappin DJC, Creasy DM, Cottrell JS. Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis. 1999; 20:3551–67.PerkinsDNPappinDJCCreasyDMCottrellJSProbability-based protein identification by searching sequence databases using mass spectrometry dataElectrophoresis19992035516710.1002/(SICI)1522-2683(19991201)20:18<3551::AID-ELPS3551>3.0.CO;2-2Search in Google Scholar

Klinbunga S, Petkorn S, Kittisenachai S, Phaonakrop N, Roytrakul S, Khamnamtong B, Menasveta P. Identification of reproduction-related proteins and characterization of proteasome alpha 3 and proteasome beta 6 cDNAs in testes of the giant tiger shrimp Penaeus monodon Mol Cell Endocrinol. 2012; 355:143–52.KlinbungaSPetkornSKittisenachaiSPhaonakropNRoytrakulSKhamnamtongBMenasvetaPIdentification of reproduction-related proteins and characterization of proteasome alpha 3 and proteasome beta 6 cDNAs in testes of the giant tiger shrimp Penaeus monodonMol Cell Endocrinol20123551435210.1016/j.mce.2012.02.005Search in Google Scholar

Li QW, Lu XY, You Y, Sun H, Liu XY, Ai JZ, et al. Comparative proteomic analysis suggests that mitochondria are involved in autosomal recessive polycystic kidney disease. Proteomics. 2012; 12:2556–70.LiQWLuXYYouYSunHLiuXYAiJZet alComparative proteomic analysis suggests that mitochondria are involved in autosomal recessive polycystic kidney diseaseProteomics20121225567010.1002/pmic.201100590Search in Google Scholar

Sondi I, Salopek-Sondi B. Silver nanoparticles as antimicrobial agent: A case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci. 2004; 275:177–82.SondiISalopek-SondiBSilver nanoparticles as antimicrobial agent: A case study on Ecoli as a model for Gram-negative bacteria. J Colloid Interface Sci20042751778210.1016/j.jcis.2004.02.012Search in Google Scholar

Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramírez JT, Yacaman MJ. The bactericidal effect of silver nanoparticles. Nanotechnol. 2005; 16:2346–53.MoronesJRElechiguerraJLCamachoAHoltKKouriJBRamírezJTYacamanMJThe bactericidal effect of silver nanoparticlesNanotechnol20051623465310.1088/0957-4484/16/10/059Search in Google Scholar

Kumar GB, Black PN. Bacterial long-chain fatty acid transport: Identification of amino acid residues within the outer membrane protein FadL required for activity. J Biol Chem. 1993; 268:15469–76.KumarGBBlackPNBacterial long-chain fatty acid transport: Identification of amino acid residues within the outer membrane protein FadL required for activityJ Biol Chem1993268154697610.1016/S0021-9258(18)82280-3Search in Google Scholar

Li WR, Xie XB, Shi QS, Zeng HY, Yang YSO, Chen YB. Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli. Appl Microbiol Biotechnol. 2010; 85:1115– 22.LiWRXieXBShiQSZengHYYangYSOChenYBAntibacterial activity and mechanism of silver nanoparticles on Escherichia coliAppl Microbiol Biotechnol20108511152210.1007/s00253-009-2159-5Search in Google Scholar

Jung WK, Koo HC, Kim KW, Shin S, Kim SH, Park YH. Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli Appl Environ Microbiol. 2008; 74:2171–8.JungWKKooHCKimKWShinSKimSHParkYHAntibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coliAppl Environ Microbiol2008742171810.1128/AEM.02001-07229260018245232Search in Google Scholar

Belunis CJ, Raetz CR. Biosynthesis of endotoxins. Purification and catalytic properties of 3-deoxy-D-manno-octulosonic acid transferase from Escherichia coli J Biol Chem. 1992; 267:9988–97.BelunisCJRaetzCRBiosynthesis of endotoxinsPurification and catalytic properties of 3-deoxy-D-manno-octulosonic acid transferase from Escherichia coli J Biol Chem1992267998897Search in Google Scholar

Brabetz W, Lindner B, Brade H. Comparative analyses of secondary gene products of 3-deoxy-D-manno-oct-2-ulosonic acid transferases from Chlamydiaceae in Escherichia coli K-12. Eur J Biochem. 2000; 267:5458–65.BrabetzWLindnerBBradeHComparative analyses of secondary gene products of 3-deoxy-D-manno-oct-2-ulosonic acid transferases from Chlamydiaceae in Escherichia coli K-12Eur J Biochem200026754586510.1046/j.1432-1327.2000.01619.x10951204Search in Google Scholar

Poole K. Bacterial stress responses as determinants of antimicrobial resistance. J Antimicrob Chemother. 2012; 67:2069–89.PooleKBacterial stress responses as determinants of antimicrobial resistanceJ Antimicrob Chemother20126720698910.1093/jac/dks19622618862Search in Google Scholar

Ceciliani F, Caramori T, Ronchi S, Tedeschi G, Mortarino M, Galizzi A. Cloning, overexpression, and purification of Escherichia coli quinolinate synthetase. Protein Expres Purif. 2000; 18: 64–70.CecilianiFCaramoriTRonchiSTedeschiGMortarinoMGalizziACloning, overexpression, and purification of Escherichia coli quinolinate synthetaseProtein Expres Purif200018647010.1006/prep.1999.115310648170Search in Google Scholar

de Ollagnier CS, Loiseau L, Sanakis Y, Barras F, Fontecave M. Quinolinate synthetase, an iron-sulfur enzyme in NAD biosynthesis. FEBS Lett. 2005; 579:3737–43.deOllagnier CSLoiseauLSanakisYBarrasFFontecaveMQuinolinate synthetase, an iron-sulfur enzyme in NAD biosynthesisFEBS Lett200557937374310.1016/j.febslet.2005.05.06515967443Search in Google Scholar

Cicchillo RM, Tu L, Stromberg JA, Hoffart LM, Krebs C, Booker SJ. Escherichia coli quinolinate synthetase does indeed harbor a [4Fe-4S] cluster. J Am Chem Soc. 2005; 127:7310–1.CicchilloRMTuLStrombergJAHoffartLMKrebsCBookerSJEscherichia coli quinolinate synthetase does indeed harbor a [4Fe-4S] clusterJ Am Chem Soc20051277310110.1021/ja051369x15898769Search in Google Scholar

Gardner PR, Fridovich I. Quinolinate synthetase: The oxygen-sensitive site of de novo NAD(P)+ biosynthesis. 1991 Arch Biochem Biophys. 1991; 284:106–11.GardnerPRFridovichIQuinolinate synthetase: The oxygen-sensitive site of de novo NAD(P)+ biosynthesis. 1991 Arch Biochem Biophys1991;28410611Search in Google Scholar

Batchelor-McAuley C, Tschulik K, Neumann CCM, Laborda E, Compton RG. Why are silver nanoparticles more toxic than bulk silver? towards understanding the dissolution and toxicity of silver nanoparticles. Int. J Electrochem Sci. 2014; 9: 1132–8.Batchelor-McAuleyCTschulikKNeumannCCMLabordaEComptonRGWhy are silver nanoparticles more toxic than bulk silver? towards understanding the dissolution and toxicity of silver nanoparticlesInt. J Electrochem Sci2014911328Search in Google Scholar

Lacey MM, Partridge JD, Green J. Escherichia coli K-12 YfgF is an anaerobic cyclic di-GMP phosphodiesterase with roles in cell surface remodelling and the oxidative stress response. Microbiol. 2010; 156:2876–86.LaceyMMPartridgeJDGreenJEscherichia coli K-12 YfgF is an anaerobic cyclic di-GMP phosphodiesterase with roles in cell surface remodelling and the oxidative stress responseMicrobiol201015628768610.1099/mic.0.037887-020522491Search in Google Scholar

Bettenbrock K, Bai H, Ederer M, Green J, Hellingwerf KJ, Holcombe M, et al. Towards a systems level understanding of the oxygen response of Escherichia coli In: Poole RK, editor. Advances in microbial physiology: Advances in microbial systems biology. Vol. 64. London: Academic Press; 2014, pp. 65–114.BettenbrockKBaiHEdererMGreenJHellingwerfKJHolcombeMet alTowards a systems level understanding of the oxygen response of Escherichia coliInPooleRKeditorAdvances in microbial physiology: Advances in microbial systems biologyVol. 64LondonAcademic Press2014pp6511410.1016/B978-0-12-800143-1.00002-624797925Search in Google Scholar

Koonin EV. Escherichia coli dinG gene encodes a putative DNA helicase related to a group of eukaryotic helicases including Rad3 protein. Nucleic Acids Res. 1993; 21:1497.KooninEVEscherichia coli dinG gene encodes a putative DNA helicase related to a group of eukaryotic helicases including Rad3 proteinNucleic Acids Res199321149710.1093/nar/21.6.14973093458385320Search in Google Scholar

Freedman LP, Zengel JM, Archer RH, Lindahl L. Autogenous control of the S10 ribosomal protein operon of Escherichia coli genetic dissection of transcriptional and posttranscriptional regulation. Proc Natl Acad Sci USA. 1987; 84:6516–20.FreedmanLPZengelJMArcherRHLindahlLAutogenous control of the S10 ribosomal protein operon of Escherichia coli genetic dissection of transcriptional and posttranscriptional regulationProc Natl Acad Sci USA19878465162010.1073/pnas.84.18.65162991082442760Search in Google Scholar

Lange PF, Huesgen PF, Overall CM. TopFIND 2.0-linking protein termini with proteolytic processing and modifications altering protein function. Nucl Acids Res. 2012; 40:351–61.LangePFHuesgenPFOverallCMTopFIND 2.0-linking protein termini with proteolytic processing and modifications altering protein functionNucl Acids Res2012403516110.1093/nar/gkr1025324499822102574Search in Google Scholar

eISSN:
1875-855X
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
6 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Medizin, Gesundheitsfachberufe, Vorklinische Medizin, Grundlagenmedizin, andere, Klinische Medizin