Alfred Jahn Cold Regions Research Centre, Department of Geomorphology, Institute of Geography and Regional Development, University of WrocławWrocław, Poland
This work is licensed under the Creative Commons Attribution 4.0 International License.
Allen S.K., Zhang G., Wang W., Yao T., Bolch T., 2019. Potentially dangerous glacial lakes across the Tibetan Plateau revealed using a large-scale automated assessment approach. Science Bulletin 64(7): 435–445. DOI 10.1016/j.scib.2019.03.011.AllenS.K.ZhangG.WangW.YaoT.BolchT.2019. Potentially dangerous glacial lakes across the Tibetan Plateau revealed using a large-scale automated assessment approach. Science Bulletin64(7): 435–445. DOI 10.1016/j.scib.2019.03.011.Open DOISearch in Google Scholar
Andreassen L.M., Nagy T., Kjøllmoen B., Leigh J.R., 2022. An inventory of Norway’s glaciers and ice-marginal lakes from 2018–19 Sentinel-2 data. Journal of Glaciology 68(72): 1–22. DOI 10.1017/jog.2022.20.AndreassenL.M.NagyT.KjøllmoenB.LeighJ.R.2022. An inventory of Norway’s glaciers and ice-marginal lakes from 2018–19 Sentinel-2 data. Journal of Glaciology68(72): 1–22. DOI 10.1017/jog.2022.20.Open DOISearch in Google Scholar
Bednorz E., Jakielczyk M., 2014. Cyrkulacyjne warunki występowania ekstremalnych opadów atmosferycznych na Spitsbergenie. Badania Fizjograficzne A(65): 39–53. DOI 10.14746/bfg.2014.5.3.BednorzE.JakielczykM.2014. Cyrkulacyjne warunki występowania ekstremalnych opadów atmosferycznych na Spitsbergenie. Badania FizjograficzneA(65): 39–53. DOI 10.14746/bfg.2014.5.3.Open DOISearch in Google Scholar
Bhambri R., Misra A., Kumar A., Gupta A.K., Verma A., Tiwari S.K., 2018. Glacier lake inventory of Himachal Pradesh. In: Jayananda M., Sharma R., Srivastava P., Jayangondaperumal R. (eds), Himalayan geology. Wadia Institute of Himalayan Geology, Dehradun, 39(1): 1–32.BhambriR.MisraA.KumarA.GuptaA.K.VermaA.TiwariS.K.2018. Glacier lake inventory of Himachal Pradesh. In: JayanandaM.SharmaR.SrivastavaP.JayangondaperumalR. (eds), Himalayan geology. Wadia Institute of Himalayan Geology, Dehradun, 39(1): 1–32.Search in Google Scholar
Błaszczyk M., Ignatiuk D., Uszczyk A., Cielecka-Nowak K., Grabiec M., Jania J.A., Moskalik M., Walczowski W., 2019. Freshwater input to the Arctic fjord Hornsund (Svalbard). Polar Research 38(3506): 1–18. DOI 10.33265/polar.v38.3506.BłaszczykM.IgnatiukD.UszczykA.Cielecka-NowakK.GrabiecM.JaniaJ.A.MoskalikM.WalczowskiW.2019. Freshwater input to the Arctic fjord Hornsund (Svalbard). Polar Research38(3506): 1–18. DOI 10.33265/polar.v38.3506.Open DOISearch in Google Scholar
Blown I., Church M., 1985. Catastrophic lake drainage within the Homathko River basin, British Columbia. Canadian Geotechnical Journal 22: 551–563. DOI 10.1139/t85-075.BlownI.ChurchM.1985. Catastrophic lake drainage within the Homathko River basin, British Columbia. Canadian Geotechnical Journal22: 551–563. DOI 10.1139/t85-075.Open DOISearch in Google Scholar
Buckel J., Otto J.C., Prasicek G., Keusching M., 2018. Glacial lakes in Austria – Distribution and formation since the Little Ice Age. Global and Planetary Change 164: 39–51. DOI 10.1016/j.gloplacha.2018.03.003.BuckelJ.OttoJ.C.PrasicekG.KeuschingM.2018. Glacial lakes in Austria – Distribution and formation since the Little Ice Age. Global and Planetary Change164: 39–51. DOI 10.1016/j.gloplacha.2018.03.003.Open DOISearch in Google Scholar
Carrivick J.L., Sutherland J.L., Huss M., Purdie H., Stringer C.D., Grimes M., James W.H.M., Lorrey A.M., 2022. Coincident evolution of glaciers and ice-marginal proglacial lakes across the Southern Alps, New Zealand: Past, present and future. Global and Planetary Change 211: 1–13. DOI 10.1016/j.gloplacha.2022.103792.CarrivickJ.L.SutherlandJ.L.HussM.PurdieH.StringerC.D.GrimesM.JamesW.H.M.LorreyA.M.2022. Coincident evolution of glaciers and ice-marginal proglacial lakes across the Southern Alps, New Zealand: Past, present and future. Global and Planetary Change211: 1–13. DOI 10.1016/j.gloplacha.2022.103792.Open DOISearch in Google Scholar
Carrivick J.L., Tweed F.S., 2016. A global assessment of the societal impacts of glacier outburst floods. Global and Planetary Change 144: 1–16. DOI 10.1016/j.gloplacha.2016.07.001.CarrivickJ.L.TweedF.S.2016. A global assessment of the societal impacts of glacier outburst floods. Global and Planetary Change144: 1–16. DOI 10.1016/j.gloplacha.2016.07.001.Open DOISearch in Google Scholar
Dallmann W.K., Forwick M., Laberg J.S., Vorren T., 2015. Physical geography. In: Dallmann W.K. (ed.), Geoscience Atlas of Svalbard. Norsk Polarinstitutt, Tromsø, 148: 19–28.DallmannW.K.ForwickM.LabergJ.S.VorrenT.2015. Physical geography. In: DallmannW.K. (ed.), Geoscience Atlas of Svalbard. Norsk Polarinstitutt, Tromsø, 148: 19–28.Search in Google Scholar
Dudek J., Wieczorek I., Suwiński M.K., Strzelecki M.C., 2023. Paraglacial transformation and ice-dammed lake dynamics in a high Arctic glacier foreland, Gåsbreen, Svalbard. Land Degradation and Development 34(14): 1–20. DOI 10.1002/ldr.4773.DudekJ.WieczorekI.SuwińskiM.K.StrzeleckiM.C.2023. Paraglacial transformation and ice-dammed lake dynamics in a high Arctic glacier foreland, Gåsbreen, Svalbard. Land Degradation and Development34(14): 1–20. DOI 10.1002/ldr.4773.Open DOISearch in Google Scholar
Dussaillant A., Benito G., Buytaert W., Carling P., Meier C., Espinoza F., 2010. Repeated glacial-lake outburst floods in Patagonia: An increasing hazard? Natural Hazards 54: 469–481. DOI 10.1007/s11069-009-9479-8.DussaillantA.BenitoG.BuytaertW.CarlingP.MeierC.EspinozaF.2010. Repeated glacial-lake outburst floods in Patagonia: An increasing hazard?Natural Hazards54: 469–481. DOI 10.1007/s11069-009-9479-8.Open DOISearch in Google Scholar
Dye A., Bryant R., Rippin D., 2022. Proglacial lake expansion and glacier retreat in Arctic Sweden. Geografiska Annaler, Series A: Physical Geography 104(4): 268–287. DOI 10.1080/04353676.2022.2121999.DyeA.BryantR.RippinD.2022. Proglacial lake expansion and glacier retreat in Arctic Sweden. Geografiska Annaler, Series A: Physical Geography104(4): 268–287. DOI 10.1080/04353676.2022.2121999.Open DOISearch in Google Scholar
Emmer A., Klimeš J., Mergili M., Vilímek V., Cochachin A., 2016. 882 lakes of the Cordillera Blanca: An inventory, classification, evolution and assessment of susceptibility to outburst floods. Catena 147: 269–279. DOI 10.1016/j.catena.2016.07.032.EmmerA.KlimešJ.MergiliM.VilímekV.CochachinA.2016. 882 lakes of the Cordillera Blanca: An inventory, classification, evolution and assessment of susceptibility to outburst floods. Catena147: 269–279. DOI 10.1016/j.catena.2016.07.032.Open DOISearch in Google Scholar
Emmer A., Vilímek V., Klimeš J., Cochachin A., 2014. Glacier retreat, lakes development and associated natural hazards in Cordilera Blanca, Peru. In: Shan W., Guo Y., Wang F., Marui H., Strom A. (eds), Landslides in cold regions in the context of climate change: 231–252. DOI 10.1007/978-3-319-00867-7_17.EmmerA.VilímekV.KlimešJ.CochachinA.2014. Glacier retreat, lakes development and associated natural hazards in Cordilera Blanca, Peru. In: ShanW.GuoY.WangF.MaruiH.StromA. (eds), Landslides in cold regions in the context of climate change: 231–252. DOI 10.1007/978-3-319-00867-7_17.Open DOISearch in Google Scholar
Ewertowski M.W., 2014. Recent transformations in the high-Arctic glacier landsystem, Ragnarbreen, Svalbard. Geografiska Annaler Series A: Physical Geography 96(3): 265–285. DOI 10.1111/geoa.12049.EwertowskiM.W.2014. Recent transformations in the high-Arctic glacier landsystem, Ragnarbreen, Svalbard. Geografiska Annaler Series A: Physical Geography96(3): 265–285. DOI 10.1111/geoa.12049.Open DOISearch in Google Scholar
Ewertowski M.W., Tomczyk A.M., 2020. Reactivation of temporarily stabilized ice-cored moraines in front of polythermal glaciers: Gravitational mass movements as the most important geomorphological agents for the redistribution of sediments (a case study from Ebbabreen and Ragnarbreen, Svalbard. Geomorphology 350: 1–20. DOI 10.1016/j.geomorph.2019.106952.EwertowskiM.W.TomczykA.M.2020. Reactivation of temporarily stabilized ice-cored moraines in front of polythermal glaciers: Gravitational mass movements as the most important geomorphological agents for the redistribution of sediments (a case study from Ebbabreen and Ragnarbreen, Svalbard. Geomorphology350: 1–20. DOI 10.1016/j.geomorph.2019.106952.Open DOISearch in Google Scholar
Frydrych K., Zagórski P., 2024. Morphodynamics of Recherchefjorden accumulative coasts since the end of the Little Ice Age. Quaestiones Geographicae 43(1): 21–43. DOI 10.14746/quageo-2024-0002.FrydrychK.ZagórskiP.2024. Morphodynamics of Recherchefjorden accumulative coasts since the end of the Little Ice Age. Quaestiones Geographicae43(1): 21–43. DOI 10.14746/quageo-2024-0002.Open DOISearch in Google Scholar
Furian W., Loibl D., Schneider C., 2021. Future glacial lakes in High Mountain Asia: An inventory and assessment of hazard potential from surrounding slopes. Journal of Glaciology 67(264): 653–670. DOI 10.1017/jog.2021.18.FurianW.LoiblD.SchneiderC.2021. Future glacial lakes in High Mountain Asia: An inventory and assessment of hazard potential from surrounding slopes. Journal of Glaciology67(264): 653–670. DOI 10.1017/jog.2021.18.Open DOISearch in Google Scholar
Geyman E.C., van Pelt W.J.J., Maloof A.C., Aas H.F., Kohler J., 2022. Historical glacier change on Svalbard predicts doubling of mass loss by 2100. Nature 601(7893): 374–379. DOI 10.1038/s41586-021-04314-4.GeymanE.C.van PeltW.J.J.MaloofA.C.AasH.F.KohlerJ.2022. Historical glacier change on Svalbard predicts doubling of mass loss by 2100. Nature601(7893): 374–379. DOI 10.1038/s41586-021-04314-4.Open DOISearch in Google Scholar
Goswami U.P., Goyal M.K., 2021. Assessment of glacial lake development and downstream flood impacts of critical glacial lake. Natural Hazards 109: 1027–1046. DOI 10.1007/s11069-021-04866-8.GoswamiU.P.GoyalM.K.2021. Assessment of glacial lake development and downstream flood impacts of critical glacial lake. Natural Hazards109: 1027–1046. DOI 10.1007/s11069-021-04866-8.Open DOISearch in Google Scholar
How P., Messerii A., Matzler E., Santoro M., Wiesmann A., Caduff R., Langley K., Bojesen M.H., Paul F., Kaab A., Carrivick J.L., 2021. Greenland-wide inventory of ice marginal lakes using a multi-method approach. Scientific Reports 11(1): 1–13. DOI 10.1038/s41598-021-83509-1.HowP.MesseriiA.MatzlerE.SantoroM.WiesmannA.CaduffR.LangleyK.BojesenM.H.PaulF.KaabA.CarrivickJ.L.2021. Greenland-wide inventory of ice marginal lakes using a multi-method approach. Scientific Reports11(1): 1–13. DOI 10.1038/s41598-021-83509-1.Open DOISearch in Google Scholar
Jia G., Shevliakova E., Artaxo P., De Noblet-Ducoudré N., Houghton R., House J., Kitajima K., Lennard C., Popp A., Sirin A., Sukumar R., Verchot L., 2019. Land–climate interactions. In: Shukla P.R., Skea J., Calvo Buendia E., Masson-Delmotte V., Pörtner H.-O., Roberts D.C., Zhai P., Slade R., Connors S., van Diemen R., Ferrat M., Haughey E., Luz S., Neogi S., Pathak M., Petzold J., Portugal Pereira J., Vyas P., Huntley E., Kissick K., Belkacemi M., Malley J. (eds), Climate change and land: An IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems. IPCC: 131–248.JiaG.ShevliakovaE.ArtaxoP.De Noblet-DucoudréN.HoughtonR.HouseJ.KitajimaK.LennardC.PoppA.SirinA.SukumarR.VerchotL.2019. Land–climate interactions. In: ShuklaP.R.SkeaJ.Calvo BuendiaE.Masson-DelmotteV.PörtnerH.-O.RobertsD.C.ZhaiP.SladeR.ConnorsS.van DiemenR.FerratM.HaugheyE.LuzS.NeogiS.PathakM.PetzoldJ.Portugal PereiraJ.VyasP.HuntleyE.KissickK.BelkacemiM.MalleyJ. (eds), Climate change and land: An IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems. IPCC: 131–248.Search in Google Scholar
Kavan J., Luláková P., Małecki J., Strzelecki M.C., 2023. Capturing the transition from marine to land-terminating glacier from the 126-year retreat history of Nordenskiöldbreen, Svalbard. Journal of Glaciology: 1–11. DOI 10.1017/jog.2023.92.KavanJ.LulákováP.MałeckiJ.StrzeleckiM.C.2023. Capturing the transition from marine to land-terminating glacier from the 126-year retreat history of Nordenskiöldbreen, Svalbard. Journal of Glaciology: 1–11. DOI 10.1017/jog.2023.92.Open DOISearch in Google Scholar
Kavan J., Wieczorek I., Tallentire G.D., Demidionov M., Uher J., Strzelecki M.C., 2022. Estimating suspended sediment fluxes from the largest glacial lake in Svalbard to fjord system using sentinel-2 data: Trebrevatnet case study. Water 14(12): 1–14. DOI 10.3390/w14121840.KavanJ.WieczorekI.TallentireG.D.DemidionovM.UherJ.StrzeleckiM.C.2022. Estimating suspended sediment fluxes from the largest glacial lake in Svalbard to fjord system using sentinel-2 data: Trebrevatnet case study. Water14(12): 1–14. DOI 10.3390/w14121840.Open DOISearch in Google Scholar
Kjeldsen K.K., Mortensen J., Bendtsen J., Petersen D., Lennert K., Rysgaard S., 2014. Ice-dammed lake drainage cools and raises surface salinities in a tidewater outlet glacier fjord, west Greenland. Journal of Geophysical Research: Earth Surface 119(6): 1310–1321. DOI 10.1002/2013JF003034.KjeldsenK.K.MortensenJ.BendtsenJ.PetersenD.LennertK.RysgaardS.2014. Ice-dammed lake drainage cools and raises surface salinities in a tidewater outlet glacier fjord, west Greenland. Journal of Geophysical Research: Earth Surface119(6): 1310–1321. DOI 10.1002/2013JF003034.Open DOISearch in Google Scholar
Loriaux T., Casassa G., 2013. Evolution of glacial lakes from the Northern Patagonia Icefield and terrestrial water storage in a sea-level rise context. Global and Planetary Change 102: 33–40. DOI 10.1016/j.gloplacha.2012.12.012.LoriauxT.CasassaG.2013. Evolution of glacial lakes from the Northern Patagonia Icefield and terrestrial water storage in a sea-level rise context. Global and Planetary Change102: 33–40. DOI 10.1016/j.gloplacha.2012.12.012.Open DOISearch in Google Scholar
Mędrek K., Gluza A., Siwek K., Zagórski P., 2014. Warunki meteorologiczne na stacji w Calypsobyen w sezonie letnim 2014 na tle wielolecia 1986-2011. Problemy Klimatologii Polarnej 24: 37–50.MędrekK.GluzaA.SiwekK.ZagórskiP.2014. Warunki meteorologiczne na stacji w Calypsobyen w sezonie letnim 2014 na tle wielolecia 1986-2011. Problemy Klimatologii Polarnej24: 37–50.Search in Google Scholar
Mölg N., Huggel C., Herold T., Storck F., Allen S., Haeberli W., Schaub Y., Odermatt D., 2021. Inventory and evolution of glacial lakes since the Little Ice Age: Lessons from the case of Switzerland. Earth Surface Processes and Landforms 46(13): 2551–2564. DOI 10.1002/esp.5193.MölgN.HuggelC.HeroldT.StorckF.AllenS.HaeberliW.SchaubY.OdermattD.2021. Inventory and evolution of glacial lakes since the Little Ice Age: Lessons from the case of Switzerland. Earth Surface Processes and Landforms46(13): 2551–2564. DOI 10.1002/esp.5193.Open DOISearch in Google Scholar
Murton J.B., 2021. What and where are periglacial landscapes? Permafrost and Periglacial Processes 32(2): 186–212. DOI 10.1002/ppp.2102.MurtonJ.B.2021. What and where are periglacial landscapes?Permafrost and Periglacial Processes32(2): 186–212. DOI 10.1002/ppp.2102.Open DOISearch in Google Scholar
Oliva M., Mercier D., Ruiz-Fernández J., McColl S., 2020. Paraglacial processes in recently deglaciated environments. Land Degradation and Development 31(15): 1871–1876. DOI 10.1002/ldr.3283.OlivaM.MercierD.Ruiz-FernándezJ.McCollS.2020. Paraglacial processes in recently deglaciated environments. Land Degradation and Development31(15): 1871–1876. DOI 10.1002/ldr.3283.Open DOISearch in Google Scholar
Osuch M., Wawrzyniak T., 2017. Inter- and intra-annual changes in air temperature and precipitation in western Spitsbergen. International Journal of Climatology 37(7): 3082–3097. DOI 10.1002/joc.4901.OsuchM.WawrzyniakT.2017. Inter- and intra-annual changes in air temperature and precipitation in western Spitsbergen. International Journal of Climatology37(7): 3082–3097. DOI 10.1002/joc.4901.Open DOISearch in Google Scholar
Paul F., Bolch T., 2019. Glacier changes since the Little Ice Age. In: Heckmann T., Morche D. (eds), Geomorphology of proglacial systems. Landform and sediment dynamics in recently deglaciated alpine landscapes. Springer: 22–42. DOI 10.1007/978-3-319-94184-4.PaulF.BolchT.2019. Glacier changes since the Little Ice Age. In: HeckmannT.MorcheD. (eds), Geomorphology of proglacial systems. Landform and sediment dynamics in recently deglaciated alpine landscapes. Springer: 22–42. DOI 10.1007/978-3-319-94184-4.Open DOISearch in Google Scholar
Planet Labs PBC, 2024. Planet Imagery, Education and Research Program, Inc. Online: developers.planet.com/docs/apis/data/sensors/ (accessed 15 February 2024).Planet Labs PBC, 2024. Planet Imagery, Education and Research Program, Inc. Online: developers.planet.com/docs/apis/data/sensors/ (accessed 15 February 2024).Search in Google Scholar
Porter C., Howat I., Noh M.J., Husby E., Khuvis S., Danish E., Tomko K., Gardiner J., Negrete A., Yadav B., Klassen J., Kelleher C., Cloutier M., Bakker J., Enos J., Arnold G., Bauer G., Morin P., 2023. ArcticDEM, Version 4.1 DOI 10.7910/DVN/3VDC4W.PorterC.HowatI.NohM.J.HusbyE.KhuvisS.DanishE.TomkoK.GardinerJ.NegreteA.YadavB.KlassenJ.KelleherC.CloutierM.BakkerJ.EnosJ.ArnoldG.BauerG.MorinP.2023. ArcticDEM, Version 4.1 DOI 10.7910/DVN/3VDC4W.Open DOISearch in Google Scholar
Rachlewicz G., 2009. River floods in glacier-covered catchments of the high Arctic: Billefjorden Wijdefjorden, Svalbard. Norsk Geografisk Tidsskrift 63(2): 115–122. DOI 10.1080/00291950902907835.RachlewiczG.2009. River floods in glacier-covered catchments of the high Arctic: Billefjorden Wijdefjorden, Svalbard. Norsk Geografisk Tidsskrift63(2): 115–122. DOI 10.1080/00291950902907835.Open DOISearch in Google Scholar
Rachlewicz G., Styszyńska A., 2007. Comparison of the course of air temperature in Petuniabukta and Svalbard-Lufthavn (Isfjord, Spitsbergen) in the years 2001–2003, Problemy Klimatologii Polarnej. 17: 121–134.RachlewiczG.StyszyńskaA.2007. Comparison of the course of air temperature in Petuniabukta and Svalbard-Lufthavn (Isfjord, Spitsbergen) in the years 2001–2003, Problemy Klimatologii Polarnej. 17: 121–134.Search in Google Scholar
Repelewska-Pękalowa J., Pękala K., Zagórski P., Superson J., 2013. Permafrost and periglacial processes. In: Zagórski P., Harasimiuk M., Rodzik J. (eds), The geographical environment of NW part of Wedel Jarlsberg land (Spitsbergen, Svalbard). Faculty of Earth Sciences and Spatial Management Maria Curie-Skłodowska University, Lublin: 166–191.Repelewska-PękalowaJ.PękalaK.ZagórskiP.SupersonJ.2013. Permafrost and periglacial processes. In: ZagórskiP.HarasimiukM.RodzikJ. (eds), The geographical environment of NW part of Wedel Jarlsberg land (Spitsbergen, Svalbard). Faculty of Earth Sciences and Spatial Management Maria Curie-Skłodowska University, Lublin: 166–191.Search in Google Scholar
Rick B., McGrath D., Armstrong W., McCoy S.W., 2022. Dam type and lake location characterize ice-marginal lake area change in Alaska and NW Canada between 1984 and 2019. Cryosphere 16(1): 297–314. DOI 10.5194/tc-16297-2022.RickB.McGrathD.ArmstrongW.McCoyS.W.2022. Dam type and lake location characterize ice-marginal lake area change in Alaska and NW Canada between 1984 and 2019. Cryosphere16(1): 297–314. DOI 10.5194/tc-16297-2022.Open DOISearch in Google Scholar
Russell A.J., Duller R., Mountney N.P., 2010. 11 Volcanogenic Jökulhlaups (glacier outburst floods) from Mýrdalsjökull: Impacts on proglacial environments. Developments in Quaternary Science 13: 181–207. DOI 10.1016/S1571-0866(09)01311-6.RussellA.J.DullerR.MountneyN.P.2010. 11 Volcanogenic Jökulhlaups (glacier outburst floods) from Mýrdalsjökull: Impacts on proglacial environments. Developments in Quaternary Science13: 181–207. DOI 10.1016/S1571-0866(09)01311-6.Open DOISearch in Google Scholar
Sakai A., 2012. Glacial lakes in the Himalayas: A review on formation and expansion processes. Global Environmental Research 16: 23–30.SakaiA.2012. Glacial lakes in the Himalayas: A review on formation and expansion processes. Global Environmental Research16: 23–30.Search in Google Scholar
Schöner M., Schöner W., 1996. Photogrammetrische und glaziologische Untersuchungen am Gåsbre: (Ergebnisse der Spitzbergenexpedition 1991). Geowissenschaftliehe Mitteilungen 42: 1–115.SchönerM.SchönerW.1996. Photogrammetrische und glaziologische Untersuchungen am Gåsbre: (Ergebnisse der Spitzbergenexpedition 1991). Geowissenschaftliehe Mitteilungen42: 1–115.Search in Google Scholar
Schöner W., Schöner M., 1997. Effects of glacier retreat on the outbursts of Goesvatnet, southwest Spitsbergen, Svalbard. Journal of Glaciology 43(144): 276–282. DOI 10.1017/S0022143000003221.SchönerW.SchönerM.1997. Effects of glacier retreat on the outbursts of Goesvatnet, southwest Spitsbergen, Svalbard. Journal of Glaciology43(144): 276–282. DOI 10.1017/S0022143000003221.Open DOISearch in Google Scholar
Schuler T.V., Dunse T., Østby T.I., Hagen J.O., 2014. Meteorological conditions on an Arctic ice cap-8 years of automatic weather station data from Austfonna, Svalbard. International Journal of Climatology 34(6): 2047–2058. DOI 10.1002/joc.3821.SchulerT.V.DunseT.ØstbyT.I.HagenJ.O.2014. Meteorological conditions on an Arctic ice cap-8 years of automatic weather station data from Austfonna, Svalbard. International Journal of Climatology34(6): 2047–2058. DOI 10.1002/joc.3821.Open DOISearch in Google Scholar
Shugar D.H., Burr A., Haritashya U.K., Kargel J.S., Watson C.S., Kennedy M.C., Bevington A.R., Betts R.A., Harrison S., Strattman K., 2020. Rapid worldwide growth of glacial lakes since 1990. Nature Climate Change 10(10): 939–945. DOI 10.1038/s41558-020-0855-4.ShugarD.H.BurrA.HaritashyaU.K.KargelJ.S.WatsonC.S.KennedyM.C.BevingtonA.R.BettsR.A.HarrisonS.StrattmanK.2020. Rapid worldwide growth of glacial lakes since 1990. Nature Climate Change10(10): 939–945. DOI 10.1038/s41558-020-0855-4.Open DOISearch in Google Scholar
Sikdar P.K., Chakraborty S., Adhya E., Paul P.K., 2004. Land use/land cover changes and groundwater potential zoning in and around Raniganj coal mining area, Bardhaman District, West Bengal – A GIS and remote sensing approach. Journal of Spatial Hydrology 4(2): 1–24.SikdarP.K.ChakrabortyS.AdhyaE.PaulP.K.2004. Land use/land cover changes and groundwater potential zoning in and around Raniganj coal mining area, Bardhaman District, West Bengal – A GIS and remote sensing approach. Journal of Spatial Hydrology4(2): 1–24.Search in Google Scholar
Urbański J.A., 2022. Monitoring and classification of high Arctic lakes in the Svalbard Islands using remote sensing. International Journal of Applied Earth Observation and Geoinformation 112: 1–13. DOI 10.1016/j.jag.2022.102911.UrbańskiJ.A.2022. Monitoring and classification of high Arctic lakes in the Svalbard Islands using remote sensing. International Journal of Applied Earth Observation and Geoinformation112: 1–13. DOI 10.1016/j.jag.2022.102911.Open DOISearch in Google Scholar
Veh G., Lützow N., Tamm J., Luna L.V., Hugonnet R., Vogel K., Geertsema M., Clague J.J., Korup O., 2023. Less extreme and earlier outbursts of ice-dammed lakes since 1900. Nature 614(7949): 701–707. DOI 10.1038/s41586022-05642-9.VehG.LützowN.TammJ.LunaL.V.HugonnetR.VogelK.GeertsemaM.ClagueJ.J.KorupO.2023. Less extreme and earlier outbursts of ice-dammed lakes since 1900. Nature614(7949): 701–707. DOI 10.1038/s41586022-05642-9.Open DOISearch in Google Scholar
Vilímek V., Klimes J., Emmer A., Benesova M., 2015. Geomorphologic impacts of the glacial lake outburst flood from Lake No. 513 (Peru). Environmental Earth Sciences 73(9): 5233–5244. DOI 10.1007/s12665-014-3768-6.VilímekV.KlimesJ.EmmerA.BenesovaM.2015. Geomorphologic impacts of the glacial lake outburst flood from Lake No. 513 (Peru). Environmental Earth Sciences73(9): 5233–5244. DOI 10.1007/s12665-014-3768-6.Open DOISearch in Google Scholar
Walder J.S., Costa J.E., 1996. Outburst floods from glacier-dammed lakes: The effect of mode of lake drainage on flood magnitude. Earth Surface Processes and Landforms 21(8): 701–723. DOI 10.1002/(SICI)1096-9837(199608)21:8<701:AID-ESP615>3.0.CO;2-2.WalderJ.S.CostaJ.E.1996. Outburst floods from glacier-dammed lakes: The effect of mode of lake drainage on flood magnitude. Earth Surface Processes and Landforms21(8): 701–723. DOI 10.1002/(SICI)1096-9837(199608)21:8<701:AID-ESP615>3.0.CO;2-2.Open DOISearch in Google Scholar
Wieczorek I., Kavan J., Wołoszyn A., Yde J., Stachnik Ł., Zagórski P., Strzelecki M.C., 2024. Development of a glacial lake system during high Arctic Paraglacial landscape transformation at Crammerbreane Glacier system, Svalbard. SSRN Electronic Journal (preprint). DOI 10.2139/ssrn.4720879.WieczorekI.KavanJ.WołoszynA.YdeJ.StachnikŁ.ZagórskiP.StrzeleckiM.C.2024. Development of a glacial lake system during high Arctic Paraglacial landscape transformation at Crammerbreane Glacier system, Svalbard. SSRN Electronic Journal (preprint). DOI 10.2139/ssrn.4720879.Open DOISearch in Google Scholar
Wieczorek I., Strzelecki M.C., Stachnik Ł., Yde J.C., Małęcki J., 2023. Post-Little Ice Age glacial lake evolution in Svalbard: Inventory of lake changes and lake types. Journal of Glaciology: 1–17. DOI 10.1017/jog.2023.34.WieczorekI.StrzeleckiM.C.StachnikŁ.YdeJ.C.MałęckiJ.2023. Post-Little Ice Age glacial lake evolution in Svalbard: Inventory of lake changes and lake types. Journal of Glaciology: 1–17. DOI 10.1017/jog.2023.34.Open DOISearch in Google Scholar
Wołoszyn A., Kasprzak M., 2023. Contemporary landscape transformation in a small Arctic catchment, Bratteggdalen, Svalbard. Polish Polar Research 44(3): 227–248. DOI 10.24425/ppr.2023.144542.WołoszynA.KasprzakM.2023. Contemporary landscape transformation in a small Arctic catchment, Bratteggdalen, Svalbard. Polish Polar Research44(3): 227–248. DOI 10.24425/ppr.2023.144542.Open DOISearch in Google Scholar
Wołoszyn A., Owczarek Z., Wieczorek I., Kasprzak M., Strzelecki M.C., 2022. Glacial outburst floods responsible for major environmental shift in Arctic coastal catchment, Rekvedbukta, Albert I Land, Svalbard. Remote Sensing 14(24): 1–20. DOI 10.3390/rs14246325.WołoszynA.OwczarekZ.WieczorekI.KasprzakM.StrzeleckiM.C.2022. Glacial outburst floods responsible for major environmental shift in Arctic coastal catchment, Rekvedbukta, Albert I Land, Svalbard. Remote Sensing14(24): 1–20. DOI 10.3390/rs14246325.Open DOISearch in Google Scholar
Yao X., Liu S., Han L., Sun M., Zhao L., 2018. Definition and classifcation system of glacial lake for inventory and hazards study. Journal of Geographical Sciences 28(2): 193–205. DOI 10.1007/s11442-018-1467-z.YaoX.LiuS.HanL.SunM.ZhaoL.2018. Definition and classifcation system of glacial lake for inventory and hazards study. Journal of Geographical Sciences28(2): 193–205. DOI 10.1007/s11442-018-1467-z.Open DOISearch in Google Scholar
Zagórski P., Jarosz K., Superson J., 2020. Integrated assessment of shoreline change along the Calypsostranda (Svalbard) from remote sensing, field survey and GIS. Marine Geodesy 43(5): 433–471. DOI 10.1080/01490419.2020.1715516.ZagórskiP.JaroszK.SupersonJ.2020. Integrated assessment of shoreline change along the Calypsostranda (Svalbard) from remote sensing, field survey and GIS. Marine Geodesy43(5): 433–471. DOI 10.1080/01490419.2020.1715516.Open DOISearch in Google Scholar
Ziaja W., Dudek J., Ostafin K., 2016. Landscape transformation under the Gåsbreen glacier recession since 1899, southwestern Spitsbergen. Polish Polar Research 37(2): 155–172. DOI 10.1515/popore-2016-0010.ZiajaW.DudekJ.OstafinK.2016. Landscape transformation under the Gåsbreen glacier recession since 1899, southwestern Spitsbergen. Polish Polar Research37(2): 155–172. DOI 10.1515/popore-2016-0010.Open DOISearch in Google Scholar
Ziaja W., Ostafin K., 2015. Landscape–seascape dynamics in the isthmus between Sørkapp land and the rest of Spitsbergen: Will a new big Arctic island form? Ambio 44(4): 332–342. DOI 10.1007/s13280-014-0572-1.ZiajaW.OstafinK.2015. Landscape–seascape dynamics in the isthmus between Sørkapp land and the rest of Spitsbergen: Will a new big Arctic island form?Ambio44(4): 332–342. DOI 10.1007/s13280-014-0572-1.Open DOISearch in Google Scholar