Uneingeschränkter Zugang

The Encke comet impact/airburst and the Younger Dryas Boundary: Testing the impossible hypothesis (YDIH)


Zitieren

Andronikov, A.V., Van Hoesel, A., Andronikova, I.E. & Hoek, W.Z., 2016. Trace element distribution and implications in sediments across the Allerød-Younger Dryas Boundary in the Netherlands and Belgium. Geografiska Annaler ser. B, 98, 325–345. Search in Google Scholar

Birkeland, P.W., 1999. Soils and geomorphology. Oxford University Press, Oxford, pp. 430. Search in Google Scholar

Broecker, W., Kennett, J.P., Flower, B.P., Teller, J.T., Trumbore, S., Bonani, G. & Wolfli, W. 1989. Routing of meltwater from the Laurentide Ice Sheet during the Younger Dryas cold episode. Nature 341, 318–321. Search in Google Scholar

Broecker, S., Denton, G.H., Edwards, R.L., Cheng, H., Alley, R.B. & Putnam, A.E. 2010. Putting the Younger Dryas cold event into context. Quaternary Science Reviews 29, 1078–1081. Search in Google Scholar

Bunch, T.E. 2022. A Tunguska sized airburst destroyed Tall el-Ham- mam a Middle Bronze Age city in the Jordan Valley near the Dead Sea. Scientific Reports https://doi.org/10.1038/s41598-021-97778-3. Search in Google Scholar

Carlson, A.E., Clark, P.U., Haley, B.A., Klinkhammer, G.P., Simmons, K., Brook, E.J. & Meissner, K.J., 2007. Geochemical proxies of North American freshwater routing during the Younger Dryas cold event. Proceedings of the National Academy of Sciences of the United States of America 104, 6556–6561. Search in Google Scholar

Dalton, A.S., & 69 others. 2020. An updated radiocarbon-based ice margin chronology for the last deglaciation of the North American Ice Sheet Complex. Quaternary Science Reviews 234, 106223, https://doi.org/10.1016/j.quascirev.2020.106223. Search in Google Scholar

Dohm, J.M., Fink, W., Williams, J.-P., Mahaney, W.C. & Ferris, J.C. 2022. Gale impact into ~half ocean and half land: Martian Chicxulub analogue. Icarus, 390. https://doi.org/10.1016/j.icarus.2022.115306. Search in Google Scholar

Engels, S., Lane, C.S., Haliuc, A., Hoek, W.Z., Muschitiello, F., Baneschi, I., Bouwman, A., Bronk Ramsey, C., Collins, J., de Bruijn, R., Heir, O., Hubay, K., Jones, G., Laug, A., Merkt, J., Meike, Müller M, Peters, T., Peterse, F., Staff, R.A., Schure, A.T.M., Turner, F., van den Bos, V. & Wagner-Cremer, F., 2022. Synchronous vegetation response to the last glacial-interglacial transition in northwest Europe. Communications Earth & Environment https://doi.org/10.1038/s43247-022-00457-y. Search in Google Scholar

Firestone, R.B., West, A., Kennett, J.P., Becker, L., Bunch, T.E., Revay, Z.S., Schultz, P.H., Belgya, T., Kennett, D.J., Erlandson, J.M., Dickenson, O.J, Goodyear, A.C., Harris, R.S., Howard, G.A., Kloosterman, J.B., Lechler, P, Mayewski, PA, Montgomery, J, Poreda, R, Darrah, T, Que Hee, S.S., Smith, A.R., Stich, A., Topping, W., Wittke, J.H. Firestone, R.B., & 25others, 2007a. Evidence for an extraterrestrial impact 12,900 years ago that contributed to the megafaunal extinctions and the Younger Dryas cooling. Proceedings of National Academy of Sciences USA 104, 16016–16021. Search in Google Scholar

Firestone, R.B., West, A., Revay, Z., Belgya, T., Smith, A. & Que Hee, S.S., 2007b. Evidence for a massive extraterrestrial airburst over North America 12.9 ka ago. American Geophysical Union Mtg. 07, PP41A sessions, San Francisco, PP41A-02. Search in Google Scholar

Firestone, R.B., West, A., Revay, Z., Hagstrum, J.T., Belgya, T., Que Hee, S.S. & Smith, A.R., 2010. Analysis of the Younger Dryas impact layer. Journal of Siberian Federal University of Engineering and Technology 3, 30–62. Search in Google Scholar

Fisher, T.G. & Lowell, T.V., 2012. Testing northwest drainage from Lake Agassiz using extant ice margin and strandline data. Quaternary International 260, 106–114. Search in Google Scholar

Gauthier, M.S., Breckenridge, A.J. & Hodder, T.J., 2022. Patterns of ice recession and ice stream activity for the MIS2 Laurentide Ice Sheet in Manitoba, Canada. Boreas 51, 274–298, DOI 10.1111bor.12571. Search in Google Scholar

Ge, T., Courty, M.M. & Guichard, F., 2009. Field-analytical approach of land-sea records elucidating the Younger Dryas syndrome. American Geophysical Union, Abstract PP31D-432: 1390. Search in Google Scholar

Goodyear, A.C., Israde-Alcántara, I., Johnson, J.R., Jordá Pardo, J.F., Kimbel, D.R., LeCompte, M., Lopino, N.H., Mahaney, W.C., Moore, A.M.T., Moore, C., Ray, J.H., Stafford, T.W., Tankersley, K.B., Wittke, J.H., Wolbach, W.C. & West, A., 2015. Bayesian chronological analyses consistent with synchronous age of 12835–12735 Ca BP for Younger Dryas boundary on four continents. Proceedings of National Academy of Sciences USA 112, 4344–4353, https://doi.org/10.1073/pnas.1507146112. Search in Google Scholar

Hartz, N., 1912. Allerød-Gytje und Allerud-Mull. Meddelelser fra Dansk Geologisk Forening 4, 85–91. Search in Google Scholar

Hartz, N. & Milthers, V., 1901. Det senglaciale Ler i Allerød Teglværksgrav. Meddelelser fra Dansk geologisk Forening 8, 31–60 Search in Google Scholar

Heaton, T.J. 2022. Non-parametric calibration of multiple related radiocarbon determinations and their calendar age summarisation. Journal of the Royal Statistical Society Ser. C (Applied Statistics), 71, 1918–1956, DOI: 10.1111/rssc.12599. Search in Google Scholar

Holliday V.T., Surovell, T., Meltzer, D.J., Grayson, D.K. & Boslough, M., 2014. The Younger Dryas impact hypothesis: a cosmic catastrophe. Journal of Quaternary Science 29, 515–530. Search in Google Scholar

Holliday, V.T., Bartlein, P.J., Scott, A.C. & Marlon, J.R., 2019. Extraordinary biomass-burning episode and impact intertriggered by the Younger Dryas cosmic impact ~12,800 years ago. Journal of Geology 128, 69–94. Search in Google Scholar

Holliday, V.T., Daulton, T.L., Bartlein, P.J. et al., 2023. Comprehensive refutation of the Younger Dryas Impact Hypothesis (YDIH). Earth-Science Reviews 2467, 104502. https://doi.org/10.1016/j.earscirev.2023.104502. Search in Google Scholar

Israde-Alcántara, I., Bischoff, J.L., Domínguez-Vázquez, G., Li, H-C, DeCarli, P.S., Bunch, T.E., Wittke, J.H., Weaver, J.C., Firestone, R.B., West, A., Kennett, J.P., Mercer, C., Xie, S., Richman, E.K., Kinzie, C.R. & Wolbach,W.S. 2012. Evidence from central Mexico supporting the Younger Dryas extraterrestrial impact hypothesis. Proceedings of National Academy of Sciences USA 109, E738–E747. Search in Google Scholar

Keigwin, L.D., Klotsko, S., Zhao, N., Reilly, B., Giosan, L. & Driscoll, N.W., 2018. Deglacial floods in the Beau-fort Sea preceded Younger Dryas cooling. Nature Geoscience 11, 599–604. Search in Google Scholar

Kennett, J.P., Becker, L. & West, A. 2007. Triggering of the Younger Dryas cooling by extraterrestrial impact. American Geophysical Union Annual Mtg, 2007, PP41A-05. Search in Google Scholar

Kennett, D.J., Kennett, J.P., West, A., Mercer, C., Que Hee, S.S., Bement, L., Bunch, T.E., Sellers, M. & Wolbach, W.S. 2009. Nanodiamonds in the younger dryas boundary sediment. Science 323(5910), 94. Search in Google Scholar

Kennett, J.P., Kennett, D.J., Culleton, J., Tortosa, J., Bischoff, J.., Bunch, T.E., Daniel, I.R., Erlandson, J.M., Ferraro, D., Firestone, R.B., Goodyear, A.C, Israde-Alcántara, I, Johnson, J.R., Jordá Pardo, J.F., Kimbel, D.R., LeCompte, M., Lopino, N.H., Mahaney, W.C., Moore, A.M.T., Moore, C.R., Ray, J.H., Stafford, T.W. Jr, Tankersley, K.B., Wittke, J.H., Wolbach, W.C. & West, A., 2015. Bayesian chronological analyses consistent with synchronous age of 12,835–12,735 Cal B.P. for Younger Dryas boundary on four continents. Proceedings of National Academy of Sciences USA 112, E4344-4353, doi: 10.1073/pnas.1507146112. Search in Google Scholar

Kenny, G.G., Hyde, W.R., Storey, M., Garde, A.A., Whitehouse, M.J., Beck, P., Johansson, L., Søndergaard, A.S., Bjørk, A.A., MacGregor, J.A., Khan, S.A., Mouginot, J., Johnson, B.C., Silber, E.A., Wielandt, D.K.P., Kjær, K.H. & Larse, N.K. 2022, A Late Paleocene age for Greenland’s Hiawatha impact structure, Science Advances. DOI: 10.1126/sciadv.abm2434. Search in Google Scholar

Kinzie, C.R., Que Hee, S.S., Stich, A., Tague, K.A., Mercer, C., Razink, J.J., Kennett, D.J., DeCarli, P.S., Bunch, T.E. & Wittke, J.H. 2014. Nanodamond-rich layer across three continents consistent with major cosmic impact at 12,800 cal BP. Journal of Geology 122, 475–506. Search in Google Scholar

Kjær, K.H., Larsen, N.K., Binder, T., Bjørk, A.A., Eisen, O., Fahnestock, M.A., Funder, S., Garde, A.A., Haack, H., Helm, V., Houmark-Nielsen, M., Kjeldsen, K.K., Khan, S.A., Machguth, H., McDonald, I., Morlighem, M., Mouginot, J., Paden, J.D., Waight, T.E., Weikusat, C., Willerslev, E. & MacGregor, J.A. 2018. A large impact crater beneath Hiawatha Glacier in northwest Greenland. Science Advances 4, eaar8173. Search in Google Scholar

Kloosterman, H., 2015. The Usselo Layer, the global conflagration and the vanishing act. Chronology & Catastrophism Review 3, 3–9. Search in Google Scholar

Kok, J.F., Storelvmo, T., Karydis,V.A., Adebiyi, A.A.,, Mahowald N.M., Evan, A.T., He, C. & Leung, D.M., 2023. Mineral dust aerosol impacts on global climate and climate change. Nature Reviews Earth & Environment 4, 71–86. https://doi.org/10.1038/s43017-022-00379-5. Search in Google Scholar

Kudryavtsev, I.V. & Dergachev, V.A., 2021. Solar activity and climate change at the end of the ice age and transition to the Holocene. Geomagnetism Aeronomy 61, 1057–1062. Search in Google Scholar

LeCompte, M., Goodyear, A.C., Demitroff, M.N., Batchelor, D., Vogel, E.K., Mooney, C., Rock, B.N. & Seidel, A.W., 2012. An independent evaluation of conflicting microspherule results from different investigations of the Younger Dryas impact hypothesis. Proceedings of National Academy of Sciences USA 106, E2960–E2969. https://doi.org/10.1073/pnas.1208603109. Search in Google Scholar

Lepper, K, Gorz, K.L., Fisher, T.G. & Lowell, T.V., 2011. Age determinations for glacial Lake Agassiz shorelines west of Fargo, North Dakota, USA. Canadian Journal of Earth Sciences 48, 1199–1207. Search in Google Scholar

Lepper, K., Buell, A.W., Fisher, T.G. & Lowell, T.V., 2013. A chronology for glacial Lake Agassiz shorelines along Upham’s namesake transect. Quaternary Research 80, 88–98. Search in Google Scholar

Leverington, D.W., Mann, J.D. & Teller, J.T., 2000. Changes in the bathymetry and volume of Glacial Lake Agassiz between 11,000 and 9300 14C yr B.P. Quaternary Research 54, 174–181. Search in Google Scholar

Leydet, D.J., Carlson, A.E., Teller, J.T., Breckenridge, A., Barth, A.M., Ullman, D.J., Sinclair, G., Milne, G.A., Cuzzone, J.K. & Caffee, M.W., 2018. Opening of glacial Lake Agassiz’s eastern outlets by the start of the Younger Dryas cold period. Geology 46, 155–158. Search in Google Scholar

Link, A.G., 1966. The textural classification of sediments. Sedimentology 7, 249–254. Search in Google Scholar

Lohne, Ø.S., Mangerud, J. & Birks, H.H., 2013. Precise C14 ages of the Vedde and Saksunarvatn ashes and the Younger Dryas boundaries from western Norway and their comparison with the Green- land Ice Core (GICC05) chronology. Journal of Quaternary Science 28, 490–500. Search in Google Scholar

Lohne, Ø.S., Mangerud, J. & Birks, H.H., 2014. IntCal13 calibrated ages of the Vedde and Saksunarvatn ashes and the Younger Dryas boundaries from Krakenes, western Norway. Journal of Quaternary Science 29, 506–507. Search in Google Scholar

Lowe, J.J., Rasmussen, S.O., Björck, S., Hoek, W.Z., Steffensen, J.P., Walker, M.J.C. & Yu, Z.C., 2008. Synchronisation of palaeoenvironmental events in the North Atlantic region during the Last Termination: a revised protocol recommended by the INTIMATE group. Quaternary Science Reviews 27, 6–17. Search in Google Scholar

Lyell, C., 1830–1833. Principles of Geology. 3 volumes, John Murray, London. Search in Google Scholar

Mahaney, W.C., 1990. Ice on the Equator, Wm Caxton. Ellison Bay, Wisconsin, 386 pp. Search in Google Scholar

Mahaney, W.C., 2002. Atlas of sand grain surface textures and applications. Oxford University Press, Oxford, 237 pp. Search in Google Scholar

Mahaney, W.C., 2019, Paleoenvironmental archives in rock rinds and sand/silt coatings. Journal of Geology 127, 411–436, Search in Google Scholar

Mahaney, W.C., 2023. The Younger Dryas Boundary (YDB): Terrestrial, cosmic, or both? International Journal of Earth Science, doi.org/10.1007/s00531-022-02287-x. Search in Google Scholar

Mahaney, W.C. & Keiser, L., 2013. Weathering rinds: unlikely host clasts for evidence of an impact-induced event. Geomorphology 184, 74–83. Search in Google Scholar

Mahaney, W.C. & Schwartz, S., 2016. Paleoclimate of Antarctica reconstructed from clast weathering rind analysis. Palaeogeograpy Paleoclimatology Paleoecology 446, 205–212. Search in Google Scholar

Mahaney, W.C. & Schwartz, S., 2021. Clast rind-paleosol record of the Antarctic early Alpine glaciation. Polar Science 28, Doi: 100648. Search in Google Scholar

Mahaney, W.C., Somelar, P. & Allen, C.C.R., 2022. Late Pleistocene glacial-paleosol-cosmic record of the Viso Massif – France and Italia – New evidence in support of the Younger Dryas Boundary (12.8 ka). International Journal of Earth Science 112, 217–242, doi.org/10.1007/s00531-022-02243-9. Search in Google Scholar

Mahaney, W.C., Milner, M.W., Kalm, V., Dirzowsky, R.W., Hancock, R.G.V. & Beukens, R.P., 2008. Evidence for a Younger Dryas glacial advance in the Andes of northwestern Venezuela. Geomorphology 96, 199–211, Search in Google Scholar

Mahaney, W.C., Keiser, L., Krinsley, D.H., Pentlavalli, P., Allen, C.C.R., Somelar, P., Schwartz, S., Dohm, J.M., Dirzowsky, R., West, A., Julig, P. & Costa, P., 2013a. Weathering rinds as mirror images of palaeosols: examples from the Western Alps with correlation to Antarctica and Mars. Journal of Geological Society 170, 33–847. https://doi.org/10.1144/jgs2012-150, Search in Google Scholar

Mahaney, W.C., Keiser, L., Krinsley, D.H., Kalm, V., Beukens, R. & West, A., 2013b. New evidence from a Black Mat Site in the northern Andes supporting a cosmic impact 12,800 Years Ago. Journal of Geology 121, 591–602, Search in Google Scholar

Mahaney, W, C., Somelar, P., Dirszowsky, R.W., Kelleher, B., Pentlavalli, P., McLaughlin, S., Kulakova, A.N., Jordan, S., Pulleyblank, C., West, A. & Allen, C.C.R, 2016a. A microbial link to weathering of postglacial rocks and sediments, Mt. Viso area, Western Alps, demonstrated through analysis of a soil/paleosol bio/chronosequence. Journal of Geology 124, 149–169. Search in Google Scholar

Mahaney, W.C., Krinsley, D.H., Razink, J., Fischer, R. & Langworthy, K., 2016b. Clast rind analysis using multi-high-resolution instrumentation. Scanning 38, 202–212. Search in Google Scholar

Mahaney, W. C., Somelar, P., West, A., Krinsley, D.H., Allen, C.C.R., Pentlavalli, P., Young, J.M., Dohm, J.M., LeCompte, M., Kelleher, B, Jordan, S., Pulleyblank, C., Dirszowsky, R. & Costa, P., 2017a. Evidence for cosmic airburst/impact in the Western Alps archived in Late Glacial paleosols. Quaternary International 438, 69–80. Search in Google Scholar

Mahaney, W.C., Krinsley, D.H., Milner, M.W., Langworthy, K. & Fischer, R., 2018a. Did the black mat/air-burst reach the Antarctic? Evidence from New Mountain near the Taylor Glacier in the Dry Valleys. Journal of Geology 126, 285–305. Search in Google Scholar

Mahaney, W.C., West, A., Milan, A., Krinsley, D., Somelar, P., Stephane, S., Milner, M.W. & Allen, C.C.R., 2018b. Cosmic impact/airburst on deposits/soils in the Western Alps of the Mt. Viso area, France. Studia Quaternaria 35, 3–23. Search in Google Scholar

Mangerud, J., 2021. The discovery of the Younger Dryas, and comments on the current meaning and usage of the term. Boreas 50, 1–5. Search in Google Scholar

Meltzer, D.J., Holliday, V.T., Cannon, M.D. & Miller, S.D., 2014. Chronological evidence fails to support claim of an isochronous widespread layer of cosmic impact indicators dated to 12,800 years ago. Proceedings of National Academy of Sciences USA 2162–2171. https://doi.org/10.1073/pnas.1401150111. Search in Google Scholar

Moore, A.M.T., Kennett, J.P., Napier, W.M., Bunch, T.E., Weaver, J..C, LeCompte, M., Adedeji, A.V., Hackley, P., Kletetschka, G., Hermes, R.E., Wittke, J.H., Razink, J.J., Gaultois, M.W. & West, A., 2020. Evidence of cosmic impact at Abu Hureyra, Syria at the Younger Dryas onset (~128 ka): High-temperature melting at >2200 °C. Scientific Report 10, 4185. https://doi.org/10.1038/s41598-020-60867. Search in Google Scholar

Napier, W.M., 2010. Palaeolithic extinctions and the Taurid Complex. Monthly Notices of Royal Astronomical Society 405, 1901–1906. Search in Google Scholar

Napier, W.M., 2019. The hazard from fragmenting comets. Monthly Notices of Royal Astronomical Society 488, 1822–1827. Search in Google Scholar

Nelson, R.L., 1954. Glacial geology of the Frying Pan River drainage, Colorado. Journal of Geology 62, 325–343. Search in Google Scholar

Norris S, L., Garcia-Castellanos, D., Jansen, J.D., Carling, P.A., Margold, M., Woywitka, R.J. & Froese, D.G., 2021. Catastrophic drainage from the northwestern outlet of Glacial Lake Agassiz during the Younger Dryas. Geophysical Research Letters 48, e2021GL093919. https://doi.org/10.1029/2021GL093919. Search in Google Scholar

Petaev, M.I., Huang, S., Jacobsen, S.B. & Zindler, A., 2013, Large Pt anomaly in the Greenland ice core points to a cataclysm at the onset of Younger Dryas. Proceedings of National Academy of Sciences USA 110, 12917–12920. Search in Google Scholar

Pino, M,, Martel-Cea, A., Astorga, G., Abarzúa, A.M., Cossio, N., Navarro, X., Lira, M.P., Labarca, R., Lecompte, M.A., Adedeji, V., Moore, C., Bunch, T.E., Mooney, C., Wolbach, W.S., West, A. & Kennett, J.P., 2019. Sedimentary record from Patagonia, southern Chile supports cosmic-impact triggering of biomass burning, climate change, and megafaunal extinctions at 12.8 ka. Scientific Report 9, 4413. Search in Google Scholar

Powell, J.L., 2023. Unlocking the Moon’s Secrets. Oxford University Press, 149 pp. Search in Google Scholar

Rassokha, I., 2020. The Younger Dryas catastrophe as the biggest catastrophe in Human History: Evidence of the most sustainable Human lexemes. SSRN-Electronic Journal, preprint. Search in Google Scholar

Ricker, K.E., Chinn, T.J. & McSaveney, M.J., 1993. A late Quaternary moraine sequence dated by rock weathering rinds, Craigieburn Range, New Zealand. Canadian Journal of Earth Sciences 30, 1861–1869. Search in Google Scholar

Rudnick, R.L. & Gao, S., 2005. Composition of the continental crust. [In:] Rudnick, R.L. (Ed.): The crust: treatise on geochemistry. Elsevier, Amsterdam, p. 1–64. Search in Google Scholar

Schiermeier, Q. & Monastersky, R., 2010. River reveals chilling tracks of ancient flood. Nature 464, 657. https://doi.org/10.1038/464657a. Search in Google Scholar

Schultz, P.H., Harris, R.S., Perroud, S., Blanco, N. & Tomlinson, A.J., 2021. Widespread glasses generated by cometary fireballs during the late Pleistocene in the Atacama Desert, Chile. Geology 50, 205–209. Search in Google Scholar

Schwartz, S., Lardeaux, J.M., Guillot, S. & Tricart, P., 2000. The diversity of eclogitic metamorphism in the Monviso ophiolitic complex, western Alps, Italy. Geodinamica Acta 13, 169–188. Search in Google Scholar

Senel, C.B., Kaskes, P., Temel, O., Vellekoop, J., Goderis, S., DePalma, R., Prins, M.A.,Claeys, P. & Karatekin, O., 2023. Chicxulub impact winter sustained by fine silicate dust. Nature Geoscience, http://dx.doi.org/10.1038/s41561-023-01290-4 Search in Google Scholar

Sharp, R., 1969. Semiquantitative differentiation of glacial moraines near Convict Lake, Sierra Nevada, Calif. Journal of Geology 77, 68–91. Search in Google Scholar

Surovell, T.A., Holliday, V.T., Gingerich, J.A.M., Ketron, C., Haynes, C.V., Hilman, I., Wagner, D.P., Johnson, E. & Claeys, P., 2009. An independent evaluation of the Younger Dryas extraterrestrial impact hypothesis. Proceedings of National Academy of Sciences USA 106, 18155–18158. Search in Google Scholar

Svensson, A., Andersen, K., Bigler, M., Clausen, H., Dahl-Jensen, D., Davies, S., Johnsen, S., Muscheler, R., Parrenin, F., Rasmussen, S., Rothlisberger, R., Seierstad, I., Steffensen, J.P. & Vinther, B., 2008. A 60 000 year Greenland stratigraphic ice core chronology. Climate of the Past 4, 47–57. Search in Google Scholar

Svetsov, V., 1996. Total ablation of the debris from the 1908 Tunguska explosion. Nature 383, 697–699. Search in Google Scholar

Sweatman, M., 2024. Holliday et al.’s Gish gallop: timing of the Younger Dryas impact on four continents. History Decoded Blog, Jan.15. Search in Google Scholar

Tarasov, L. & Peltier, W.R., 2006. A calibrated deglacial drainage chronology for the North American continent: evidence for an Arctic trigger for the Younger Dryas. Quaternary Science Review 25, 659–688. Search in Google Scholar

Teller, J.T., Leverington, D.W. & Mann, J.D., 2002. Freshwater outbursts to the oceans from glacial Lake Agassiz and their role in climate change during the last deglaciation. Quaternary Sciences Review 21, 879–887. Search in Google Scholar

Teller, J., Boyd, M., LeCompte, M., Kennett, J., West, A., Telka, A., Diaz, A., Adedeji, V., Batchelor, D., Mooney, C.& Garcia, R., 2019. A multi-proxy study of changing environmental conditions in a Younger Dryas sequence in southwestern Manitoba, Canada, and evidence for an extraterrestrial event. Quaternary Research 93, 60–87. doi:10.1017/qua.2019.46. Search in Google Scholar

Thackeray, J.F., Scott, L. & Pieterse P., 2019. The Younger Dryas interval at Wonderkrater (South Africa) in the context of a platinum anomaly. Palaeontologia Africana 54, 30–35. Search in Google Scholar

Thiagarajan, N., Subhas, A.V., Southon, J.R., Eiler, J.M. & Adkins, J.F., 2014. Abrupt pre–Bølling-Allerød warming and circulation change in the deep ocean. Nature 511, 75–78. Search in Google Scholar

Tricart, P., 1984. From passive margin to continental collision: a tectonic scenario for the Western Alps. American Journal of Science 284, 97–120. Search in Google Scholar

Tricart, P. & Schwartz, S., 2006. A north-south section across the Queyras Schistes lustrés (Piedmont zone, Western Alps): syncollision refolding of a subduction wedge. Eclogae Geologicae Helvetia 99, 429–442. Search in Google Scholar

Tricart, P., Schwartz, S., Lardeaux, J-M, Thouvenot, F. & du Chaffaut, S.A., 2003. Aiguilles-Col Saint-Martin. Carte Géologique De La France 1:50000. Search in Google Scholar

Usatov, M., 2020. Main belt asteroid as a possible Younger Dryas Impactor. Astronomical Notes DOI: 10.1002/asna.202013817. Search in Google Scholar

Van der Hammen T. & Van Geel, B., 2008. Charcoal in soils of the Allerød-Younger Dryas transition were the result of natural fires and not necessarily the effect of an extra-terrestrial impact. Netherlands Journal of Geosciences 8, 359–361. Search in Google Scholar

Voytek, E.B., Colman, S.M., Wattrus, N., Gary, J.L. & Lewis, C.F.M., 2012. Thunder Bay, Ontario, was not a pathway for catastrophic floods from Glacial Lake Agassiz. Quaternary International 260, 98–105. Search in Google Scholar

Wittke, J.H., Weaver, J.C., Bunch, T.E., Kennett, J.P., Kennett, D.J., Moore, A.M.T, Hillman, G.C., Tankersley, K.B., Goodyear, A.C., Moore, C.R., Daniel, R. Jr, Ray, J.H., Lopinot, N.H., Ferraro, D., Israde-Alcántara, I., Bischoff, J.L., DeCarli, P.S., Hermes, R.E., Kloosterman, J.B., Revay, Z., Howard, G.A., Kimbel, D.R., Kletetschka, G., Nabelek, L., Lipo, C.P., Sakai, S., West, A. & Firestone, R.B., 2013. Evidence for deposition of 10 million tonnes of impact spherules across four continents 12,800 years ago. Proceedings of National Academy of Sciences USA 110, E2008–E2087. https://doi.org/10.1073/pnas.1301760110. Search in Google Scholar

Wolbach W.S., Ballard, J.P., Mayewski, P.A., Parnell, A.C., Cahill, N., Adedeji, V., Bunch, T.E., Domínguez-Vázquez, G., Erlandson, J.M., Firestone, R.B., French, T.A., Howard, G., Israde-Alcántara, I., Johnson, J.R., Kimbel, D., Kinzie, C.R., Kurbatov, A., Kletetschka, G., LeCompte, M.A., Mahaney, W.C., Melott, L., Mitra, S., Maiorana-Boutilier, A., Moore, C.R., Napier WM, Parlier, J., Tankersley, K.B., Thomas, B.C., Wittke, J.C., West, A. & Kennett, J.P., 2018a. Extraordinary biomass-burning episode and impact winter triggered by the younger dryas cosmic impact ~12,800 years ago. 1. Ice cores and glaciers. Journal of Geology 126, 165–184. Search in Google Scholar

Wolbach W.S., Ballard, J.P., Mayewski, P.A., Parnell, A.C., Cahill, N., Adedeji, V., Bunch, T.E., Domínguez-Vázquez, G., Erlandson, J.M., Firestone, R.B., French, T.A., Howard, G., Israde-Alcántara, I., Johnson, J.R., Kimbel, D., Kinzie, C.R., Kurbatov, A., Kletetschka, G., LeCompte, M.A., Mahaney, W.C., Melott, L., Mitra, S., Maiorana-Boutilier, A., Moore, C.R., Napier WM, Parlier, J., Tankersley, K.B., Thomas, B.C., Wittke, J.C., West, A., Kennett, J.P., 2018b. Extraordinary bio-mass-burning episode and impact winter triggered by the younger dryas cosmic impact ~12,800 years ago. 2. lake, marine, and terrestrial sediments. Journal of Geology 126, 185–205. Search in Google Scholar

Wolbach, W.S., Ballard, J.P., Bunch, T.E., LeCompte, M.A., Adedeji, V., Firestone, R.B., Mahaney, W.C., Melott, A.I., Moore, C.R., Napier, W.M., Howard, G.A., Tankersley, K.B., Thomas, B.C., Wittke, J.H., Kennett, J.P. & West, A., 2019. A response to Holliday et al.: numerous inaccurate claims about Wolbach et al. (2019) and the Younger Dryas impact hypothesis. Journal of Geology. https://doi.org/10.1086/706265. Search in Google Scholar

eISSN:
2080-6574
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
3 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Geowissenschaften, Geophysik, Geologie und Mineralogie, andere