Zitieren

World Health Organization. “Assistive technology,” WHO, 2018. Assistive technology (accessed Mar. 20, 2022). Search in Google Scholar

World Health Organization. “Blindness and vision impairment,” WHO, 2021. https://www.who.int/news-room/fact-sheets/detail/blindness-and-visual-impairment (accessed Feb. 20, 2022). Search in Google Scholar

L. S. Ambati, O. F. El-Gayar, and N. Nawar. “Influence of the digital divide and socio-economic factors on prevalence of diabetes,” Issues Inf. Syst., vol. 21, no. 4, 2020, pp. 103–113, 2020. doi: 10.48009/4_iis_2020_103-113. Search in Google Scholar

C. Guo et al. “Prevalence, causes and social factors of visual impairment among Chinese adults: based on a national survey,” Int. J. Environ. Res. Public Health, vol. 14, no. 9, 2017, p. 1034. doi: 10.3390/ijerph14091034. Search in Google Scholar

C. Albus. “Psychological and social factors in coronary heart disease,” Ann. Med., vol. 42, no. 7, 2010, pp. 487–494. doi: 10.3109/07853890.201 0.515605. Search in Google Scholar

O. F. El-Gayar, L. S. Ambati, and N. Nawar. “Wearables, artificial intelligence, and the future of healthcare,” 2020, pp. 104–129. doi: 10.4018/978-1-5225-9687-5.ch005. Search in Google Scholar

P. Pandey and R. Litoriya. “An activity vigilance system for elderly based on fuzzy probability transformations,” J. Intell. Fuzzy Syst., vol. 36, no. 3, 2019, pp. 2481–2494. doi: 10.3233/JIFS-181146. Search in Google Scholar

P. Pandey and R. Litoriya. “Ensuring elderly well being during COVID-19 by using IoT,” Disaster Med. Public Health Prep., vol. 16, no. 2, 2020, pp. 763–766. doi: 10.1017/dmp.2020.390. Search in Google Scholar

L. S. Ambati, O. F. El-Gayar, and N. Nawar. “Design principles for multiple Sclerosis mobile selfmanagement applications: A patient-centric perspective,” 2021. Search in Google Scholar

Z. Zou et al. “Object detection in 20 years: A survey,” 2019. http://arxiv.org/abs/1905.05055. Search in Google Scholar

L. S. Ambati and O. F. El-Gayar. “Human activity recognition: A comparison of machine learning approaches,” J. Midwest Assoc. Inf. Syst., vol. 2021, no. 1, 2021. doi: 10.17705/3jmwa.000065. Search in Google Scholar

V. Iyer et al. “Virtual assistant for the visually impaired,” 2020 5th International Conference on Communication and Electronics Systems (ICCES), 2020, pp. 1057–1062. doi: 10.1109/ICCES487 66.2020.9137874. Search in Google Scholar

R. Saffoury et al. “Blind path obstacle detector using smartphone camera and line laser emitter,” 2016 1st International Conference on Technology and Innovation in Sports, Health and Wellbeing (TISHW), 2016, pp. 1–7. doi: 10.1109/TI SHW.2016.7847770. Search in Google Scholar

A. Mohanta et al. “Application for the visually impaired people with voice assistant,” Int. J. Innov. Technol. Explor. Eng., vol. 9, no. 6, 2020, pp. 495–497. doi: 10.35940/ijitee.F3789.049620. Search in Google Scholar

V. Sharma, V. M. Singh, and S. Thanneeru. “Virtual assistant for visually impaired,” SSRN Electron. J., 2020. doi: 10.2139/ssrn.3580035. Search in Google Scholar

A. M. Weeratunga et al. “Project Nethra - an intelligent assistant for the visually disabled to interact with internet services,” 2015 IEEE 10th International Conference on Industrial and Information Systems (ICIIS), 2015, pp. 55–59. doi: 10.1109/ICIINFS.2015.7398985. Search in Google Scholar

N. Kumaran et al. “Intelligent personal assistant - implementing voice commands enabling speech recognition,” 2020 International Conference on System, Computation, Automation and Networking (ICSCAN), 2020, pp. 1–5. doi: 10.1109/ICSCAN49426.2020.9262279. Search in Google Scholar

V. Kepuska and G. Bohouta. “Next-generation of virtual personal assistants (Microsoft Cortana, Apple Siri, Amazon Alexa and Google Home),” 2018 IEEE 8th Annual Computing and Communication Workshop and Conference (CCWC), 2018, pp. 99–103. doi: 10.1109/CCWC.2018.8301638. Search in Google Scholar

G. Iannizzotto et al. “A vision and speech enabled, customizable, virtual assistant for smart environments,” 2018 11th International Conference on Human System Interaction (HSI), 2018, pp. 50–56. doi: 10.1109/HSI.2018.84 31232. Search in Google Scholar

R. G. Praveen and R. P. Paily. “Blind navigation assistance for visually impaired based on local depth hypothesis from a single image,” Procedia Eng., vol. 64, 2013, pp. 351–360. doi: 10.1016/j.proeng.2013.09.107. Search in Google Scholar

M. W. Rahman et al. “The architectural design of smart blind assistant using IoT with deep learning paradigm,” Internet of Things, vol. 13, 2021, p. 100344. doi: 10.1016/j.iot.2020.100344. Search in Google Scholar

J. Redmon et al. “You only look once: unified, realtime object detection,”2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 779–788. doi: 10.1109/CVPR.2016.91. Search in Google Scholar

J.-M. Perez-Rua et al. “Incremental few-shot object detection,” 2020. http://arxiv.org/abs/2003.04668. Search in Google Scholar

T.-Y. Lin et al. “Microsoft COCO: common objects in context,” 2014, pp. 740–755. doi: 10.1007/978-3-319-10602-1_48. Search in Google Scholar

J. Redmon and A. Farhadi. “YOLOv3: An incremental improvement,” 2018. doi: arXiv: 1804.02767. Search in Google Scholar

eISSN:
2080-2145
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Informatik, Künstliche Intelligenz, Technik, Elektrotechnik, Mess-, Steuer- und Regelungstechnik, Maschinenbau, Grundlagen des Maschinenbaus