Open Access

Quantitative evaluation of blood glucose concentration using impedance sensing devices


Cite

Fuchs K, Kaatze U. Molecular Dynamics of Carbohydrate Aqueous Solutions. Dielectric Relaxation as a Function of Glucose and Fructose Concentration. J. Phys. Chem. B. 2001;105(10):2036-2042. http://dx.doi.org/10.1021/jp0030084FuchsKKaatzeUMolecular Dynamics of Carbohydrate Aqueous SolutionsDielectric Relaxation as a Function of Glucose and Fructose Concentration. J. Phys. Chem. B20011051020362042http://dx.doi.org/10.1021/jp003008410.1021/jp0030084Search in Google Scholar

Yoshihito H, Leonid L, Andreas C, Yuri F. Dielectric spectroscopy study of specific glucose influence on human erythrocyte membranes. J. Phys. D: Appl. Phys. 2003;36(4):369. http://dx.doi.org/10.1088/0022-3727/36/4/30710.1088/0022-3727/36/4/307YoshihitoHLeonidLAndreasCYuriFDielectric spectroscopy study of specific glucose influence on human erythrocyte membranesJ. Phys. D: Appl. Phys2003364369http://dx.doi.org/10.1088/0022-3727/36/4/307Open DOISearch in Google Scholar

Shervedani RK, Mehrjardi AH, Zamiri N. A novel method for glucose determination based on electrochemical impedance spectroscopy using glucose oxidase self-assembled biosensor. Bioelectrochem. 2006;69(2): 201-208. http://dx.doi.org/10.1016/j.bioelechem.2006.01.00310.1016/j.bioelechem.2006.01.003ShervedaniRKMehrjardiAHZamiriNA novel method for glucose determination based on electrochemical impedance spectroscopy using glucose oxidase self-assembled biosensorBioelectrochem2006692201208http://dx.doi.org/10.1016/j.bioelechem.2006.01.003Open DOISearch in Google Scholar

Forzani ES, Zhang H, Nagahara LA, Amlani I, Tsui R, Tao N. A Conducting Polymer Nanojunction Sensor for Glucose Detection. Nano Lett. 2004;4(9):1785-1788. http://dx.doi.org/10.1021/nl049080l10.1021/nl049080lForzaniESZhangHNagaharaLAAmlaniITsuiRTaoNA Conducting Polymer Nanojunction Sensor for Glucose DetectionNano Lett20044917851788http://dx.doi.org/10.1021/nl049080lOpen DOISearch in Google Scholar

Yang K, She G-W, Wang H, Ou X-M, Zhang X-H, Lee C-S, Lee S-T. ZnO Nanotube Arrays as Biosensors for Glucose. J. Phys. Chem. C. 2009;113(47):20169-20172. http://dx.doi.org/10.1021/jp901894j10.1021/jp901894jYangKSheG-WWangHOuX-MZhangX-HLeeC-SLeeS-TZnO Nanotube Arrays as Biosensors for GlucoseJ. Phys. Chem. C2009113472016920172http://dx.doi.org/10.1021/jp901894jOpen DOISearch in Google Scholar

Rahman MM, Ahammad AJS, Jin J-H, Ahn SJ, Lee J-J. A Comprehensive Review of Glucose Biosensors Based on Nanostructured Metal-Oxides. Sensors. 2010;10(5): 4855-4886. http://dx.doi.org/10.3390/s10050485510.3390/s10050485522399911RahmanMMAhammadAJSJinJ-HAhnSJLeeJ-JA Comprehensive Review of Glucose Biosensors Based on Nanostructured Metal-OxidesSensors201010548554886http://dx.doi.org/10.3390/s100504855Open DOISearch in Google Scholar

Pradhan R, Mitra A, Das S. Impedimetric characterization of human blood using three-electrode based ECIS devices. J. Electr. Bioimp. 2012;3(1):12-19. http://dx.doi.org/10.5617/joeb.238PradhanRMitraADasSImpedimetric characterization of human blood using three-electrode based ECIS devicesJ. Electr. Bioimp2012311219http://dx.doi.org/10.5617/joeb.23810.5617/jeb.238Search in Google Scholar

Pradhan R, Mitra A, Das S. Characterization of Electrode/Electrolyte Interface of ECIS Devices. Electroanal. 2012;24(12):2405-2414. http://dx.doi.org/10.1002/elan.20120045510.1002/elan.201200455PradhanRMitraADasSCharacterization of Electrode/Electrolyte Interface of ECIS DevicesElectroanal2012241224052414http://dx.doi.org/10.1002/elan.201200455Open DOISearch in Google Scholar

Mishra NN, Retterer S, Zieziulewicz TJ, Isaacson M, Szarowski D, Mousseau DE, Lawrence DA, Turner JN. On-chip micro-biosensor for the detection of human CD4+ cells based on AC impedance and optical analysis. Biosens. Bioelectron. 2005;21:696-704. http://dx.doi.org/10.1016/j.bios.2005.01.01110.1016/j.bios.2005.01.01116242607MishraNNRettererSZieziulewiczTJIsaacsonMSzarowskiDMousseauDELawrenceDATurnerJNOn-chip micro-biosensor for the detection of human CD4+ cells based on AC impedance and optical analysisBiosens. Bioelectron200521696704http://dx.doi.org/10.1016/j.bios.2005.01.011Open DOISearch in Google Scholar

Brett CMA, Brett AMO. Electrochemistry-Priniciples. Methods and Applications. Oxford University Press, London, UK. 1993;185-186.BrettCMABrettAMOElectrochemistry-Priniciples. Methods and ApplicationsOxford University PressLondon, UK1993185186Search in Google Scholar

Lind R, Connolly P, Wilkinson CDW, Thomson RD. Finite-element analysis applied to extracellular microelectrode design, Sens. Actuators, B. 1991;3:23-30. http://dx.doi.org/10.1016/0925-4005(91)85004-310.1016/0925-4005(91)85004-3LindRConnollyPWilkinsonCDWThomsonRDFinite-element analysis applied to extracellular microelectrode design, SensActuators, B199132330http://dx.doi.org/10.1016/0925-4005(91)85004-3Open DOISearch in Google Scholar

Breckenridge LJ, Wilson RJA, Connolly P, Curtis ASG, Dow JAT, Blackshaw SE, Wilkinson CDW. Advantages of using microfabricated extracellular electrodes for in vitro neuronal recording. J. Neurosci. Res. 1995;42: 266-276. http://dx.doi.org/10.1002/jnr.490420215856892810.1002/jnr.490420215BreckenridgeLJWilsonRJAConnollyPCurtisASGDowJATBlackshawSEWilkinsonCDWAdvantages of using microfabricated extracellular electrodes for in vitro neuronal recordingJ. Neurosci. Res199542266276http://dx.doi.org/10.1002/jnr.490420215Search in Google Scholar

Caduff A, Hirt E, Feldman Y, Ali Z, Heinemann L. First human experiments with a novel non-invasive, non-optical continuous glucose monitoring system. Biosens. Bioelectron. 2003;19(3): 209-217. http://dx.doi.org/10.1016/S0956-5663(03)00196-91461175610.1016/S0956-5663(03)00196-9CaduffAHirtEFeldmanYAliZHeinemannLFirst human experiments with a novel non-invasive, non-optical continuous glucose monitoring systemBiosens. Bioelectron2003193209217http://dx.doi.org/10.1016/S0956-5663(03)00196-9Search in Google Scholar

Tura A, Sbrignadello S, Barison S, Conti S, Pacini G. Dielectric properties of water and blood samples with glucose at different concentrations. IFMBE Proc. 2007;16:194-197. http://dx.doi.org/10.1007/978-3-540-73044-6_4810.1007/978-3-540-73044-6_48TuraASbrignadelloSBarisonSContiSPaciniGDielectric properties of water and blood samples with glucose at different concentrationsIFMBE Proc200716194197http://dx.doi.org/10.1007/978-3-540-73044-6_48Open DOISearch in Google Scholar

Hillier TA, Abbott RD, Barrett EJ. Hyponatremia: evaluating the correction factor for hyperglycemia. Am. J. Med. 1999;106(4):399-3. http://dx.doi.org/10.1016/S0002-9343(99)00055-81022524110.1016/S0002-9343(99)00055-8HillierTAAbbottRDBarrettEJHyponatremia: evaluating the correction factor for hyperglycemiaAm. J. Med199910643993http://dx.doi.org/10.1016/S0002-9343(99)00055-8Search in Google Scholar