Open Access

Geometric parameters optimization of planar interdigitated electrodes for bioimpedance spectroscopy


Cite

Grimnes S, Martinsen OG. Bioimpedance and Bioelectricity Basics. Academic Press; 2000.GrimnesSMartinsenOGBioimpedance and Bioelectricity BasicsAcademic Press200010.1016/B978-012303260-7/50009-5Search in Google Scholar

Faes TJ, Meij HA, De Munck JC, Heethaar RM. The electric resistivity of human tissues (100 Hz-10 MHz): a meta-analysis of review studies. Physiol Meas 1999, 20:R1-10. http://dx.doi.org/10.1088/0967-3334/20/4/2011059322610.1088/0967-3334/20/4/201FaesTJMeijHADeMunck JCHeethaarRMThe electric resistivity of human tissues (100 Hz-10 MHz): a meta-analysis of review studiesPhysiol Meas199920R110http://dx.doi.org/10.1088/0967-3334/20/4/201Search in Google Scholar

Katz E, Willner I. Probing Biomolecular Interactions at Conductive and Semiconductive Surfaces by Impedance Spectroscopy: Routes to Impedimetric Immunosensors, DNA-Sensors, and Enzyme Biosensors. Electroanalysis, 15 (11), 913-947, 2003. http://dx.doi.org/10.1002/elan.20039011410.1002/elan.200390114KatzEWillnerIProbing Biomolecular Interactions at Conductive and Semiconductive Surfaces by Impedance Spectroscopy: Routes to Impedimetric Immunosensors, DNA-Sensors, and Enzyme BiosensorsElectroanalysis15119139472003http://dx.doi.org/10.1002/elan.200390114Open DOISearch in Google Scholar

Sheppard NF, Tucker RC, Wu C. Electrical-Conductivity Measurements Using Microfabricated Interdigitated Electrodes. Analytical Chemistry, 1993, 65(9), p. 1199-1202. http://dx.doi.org/10.1021/ac00057a01610.1021/ac00057a016SheppardNFTuckerRCWuCElectrical-Conductivity Measurements Using Microfabricated Interdigitated ElectrodesAnalytical Chemistry199365911991202http://dx.doi.org/10.1021/ac00057a016Open DOISearch in Google Scholar

Mukhopadhyay SC. Sensing and Instrumentation for a Low Cost Intelligent Sensing System. SICE-ICASE International Joint Conference, Bexco, Busan, Korea, pp 1075-1080, Oct 2006. http://dx.doi.org/10.1109/SICE.2006.315815MukhopadhyaySCSensing and Instrumentation for a Low Cost Intelligent Sensing SystemSICE-ICASE International Joint Conference, Bexco, Busan, Korea107510802006http://dx.doi.org/10.1109/SICE.2006.31581510.1109/SICE.2006.315815Search in Google Scholar

Mukhopadhyay SC, Gooneratne CP, Demidenko S, Sen Gupta G. Low cost sensing system for dairy products quality monitoring. Proceedings of 2005 International Instrumentation and Measurement Technology Conference, Ottawa, Ont 2005, IEEE Catalog Number 05CH37627C, ISBN 0-7803-8880-1, 244-249.MukhopadhyaySCGooneratneCPDemidenkoSSenGupta GLow cost sensing system for dairy products quality monitoring. Proceedings of 2005 International Instrumentation and Measurement Technology ConferenceOttawaOnt 2005, IEEE Catalog Number 05CH37627C, ISBN 0-7803-8880-1244249Search in Google Scholar

Van Gerwen P, Laureyn W, Laureys W, Huyberechts G, Op De Beeck M, Baert K, Suls F, Sansen W, Jacobs P, Hermans L, Mertens R. Nanoscaled interdigitated electrode arrays for biochemical sensors. Sens. Actuators, B 49.1999.73–80.VanGerwen PLaureynWLaureysWHuyberechtsGOpDe Beeck MBaertKSulsFSansenWJacobsPHermansLMertensRNanoscaled interdigitated electrode arrays for biochemical sensorsSens. ActuatorsB 49.1999738010.1016/S0925-4005(98)00128-2Search in Google Scholar

Timms S, Colquhoun KO, Fricker CR. Detection of Escherichia coli in potable water using indirect impedance technology. J. Microbiol, Meth, 26(1996) 125. http://dx.doi.org/10.1016/0167-7012(96)00903-710.1016/0167-7012(96)00903-7TimmsSColquhounKOFrickerCRDetection of Escherichia coli in potable water using indirect impedance technologyJ. Microbiol, Meth261996125http://dx.doi.org/10.1016/0167-7012(96)00903-7Open DOISearch in Google Scholar

Geng P, Zhang X, Meng W, Wang Q, Jin L, Feng Z, Wu Z. Self-assembled monolayers-based immunosensor for detection of Escherichia coli using electrochemical impedance spectroscopy. Electrochim, Acta 53 (2008) 4663. http://dx.doi.org/10.1016/j.electacta.2008.01.03710.1016/j.electacta.2008.01.037GengPZhangXMengWWangQJinLFengZWuZSelf-assembled monolayers-based immunosensor for detection of Escherichia coli using electrochemical impedance spectroscopyElectrochimActa5320084663http://dx.doi.org/10.1016/j.electacta.2008.01.037Open DOISearch in Google Scholar

Franks W, Schenker I, Schmutz P, Hierlemann A, Impedance characterization and modeling of electrodes for biomedical applications. 2005. IEEE Trans. Biomed. Eng. 52, 1295–1302. http://dx.doi.org/10.1109/TBME.2005.8475231604199310.1109/TBME.2005.847523FranksWSchenkerISchmutzPHierlemannAImpedance characterization and modeling of electrodes for biomedical applications. 2005IEEE Trans. Biomed. Eng5212951302http://dx.doi.org/10.1109/TBME.2005.84752316041993Search in Google Scholar

Hong J, Yoon DS, Kim SK, Kim TS, Kim S, Pak EY, et al. AC frequency characteristics of coplanar impedance sensors as design parameters. Lab Chip. 2005;5(3):270-279. http://dx.doi.org/10.1039/b410325d10.1039/b410325d15726203HongJYoonDSKimSKKimTSKimSPakEYet alAC frequency characteristics of coplanar impedance sensors as design parametersLab Chip200553270279http://dx.doi.org/10.1039/b410325d15726203Open DOISearch in Google Scholar

Linderholm P, Bertsch A, Renaud P. Resistivity probing of multi-layered tissue phantoms using microelectrodes. Physiol Meas. 2004 Jun; 25(3):645-658. http://dx.doi.org/10.1088/0967-3334/25/3/0051525311610.1088/0967-3334/25/3/005LinderholmPBertschARenaudPResistivity probing of multi-layered tissue phantoms using microelectrodesPhysiol Meas2004Jun;253645658http://dx.doi.org/10.1088/0967-3334/25/3/005Search in Google Scholar

Olthuis W et al. Theoretical and experimental determination of cell constants of planar-interdigitated electrolyte conductivity sensors. Sensors and Actuators B 24-25 (1995) 252-256. http://dx.doi.org/10.1016/0925-4005(95)85053-8OlthuisWet alTheoretical and experimental determination of cell constants of planar-interdigitated electrolyte conductivity sensorsSensors and Actuators B 24-251995252256http://dx.doi.org/10.1016/0925-4005(95)85053-810.1016/0925-4005(95)85053-8Search in Google Scholar

Igreja R, Dias CJ. Analytical evaluation of the inter-digital electrodes capacitance for a multi-layered structure. Sensors and actuators A 112 (2004) 291-301. http://dx.doi.org/10.1016/j.sna.2004.01.04010.1016/j.sna.2004.01.040IgrejaRDiasCJAnalytical evaluation of the inter-digital electrodes capacitance for a multi-layered structureSensors and actuators A1122004291301http://dx.doi.org/10.1016/j.sna.2004.01.040Open DOISearch in Google Scholar

Grimnes S, Martinsen OG. Bioimpedance and bioelectricity basics. 2nd ed. Academic; 2008.GrimnesSMartinsenOGBioimpedance and bioelectricity basics2nd ed. Academic;200810.1016/B978-0-12-374004-5.00010-6Search in Google Scholar

Bard AJ, Faulkner LR. Electrochemical methods, fundamentals and applications, John Wiley and Sons, New York, 1980.BardAJFaulknerLRElectrochemical methods, fundamentals and applicationsJohn Wiley and SonsNew York1980Search in Google Scholar

Ibrahim M, Kourtiche D, Nadi M. The influence of interdigitated electrode configuration modeling for the bioimpedance of biological medium. Proceedings of 2010 4th International Conference on Sensing Technology Lecce, Italia, pp. 578-581.IbrahimMKourticheDNadiMThe influence of interdigitated electrode configuration modeling for the bioimpedance of biological medium. Proceedings of 2010 4th International Conference on Sensing Technology LecceItalia578581Search in Google Scholar

Timmer B, Sparreboom W, Olthuis W, Bergveld P, Berg AVD. Optimization of an electrolyte conductivity detector for measuring low ion concentrations. Lab Chip. 2002;2(2):121-124. http://dx.doi.org/10.1039/b201225a10.1039/b201225a15100845TimmerBSparreboomWOlthuisWBergveldPBergAVDOptimization of an electrolyte conductivity detector for measuring low ion concentrationsLab Chip200222121124http://dx.doi.org/10.1039/b201225a15100845Open DOISearch in Google Scholar

CRM, Formulaires et tables, ed. Tricorne. 2000.CRM, Formulaires et tables, edTricorne2000Search in Google Scholar

CoventoreWare® Analyzer version 2010. Reference MEMS and Microsystems Design, section MemElectro. www.coventor.comCoventoreWare® Analyzer version 2010. Reference MEMS and Microsystems Design, section MemElectrowww.coventor.comSearch in Google Scholar

Bard AJ, Faulkner LR. Electrochemical Methods, New York, Willey, 2001.BardAJFaulknerLRElectrochemical MethodsNew York, Willey2001Search in Google Scholar

Dielectric Properties of Body Tissues in the frequency range 10Hz-100GHz. www.niremf.ifac.cnr.it/tissprop/htmlclie/htmlclie.htmDielectric Properties of Body Tissues in the frequency range 10Hz-100GHzwww.niremf.ifac.cnr.it/tissprop/htmlclie/htmlclie.htmSearch in Google Scholar

Jaspard F, Nadi M, Rouane A. Dielectric properties of blood : an investigation of haematocrit dependance, Physiological Measurement, Vol 24 pages 134-147, 2003. http://dx.doi.org/10.1088/0967-3334/24/1/310JaspardFNadiMRouaneADielectric properties of blood : an investigation of haematocrit dependance, Physiological MeasurementVol 241341472003http://dx.doi.org/10.1088/0967-3334/24/1/31010.1088/0967-3334/24/1/31012636192Search in Google Scholar

Zimmerman WBJ. Multiphysics Modeling With Finite Element Methods (Series on Stability, Vibration and Control of Systems, Serie). World Scientific Publishing Co., Inc. River Edge, NJ, USA, 2006.ZimmermanWBJMultiphysics Modeling With Finite Element Methods (Series on Stability, Vibration and Control of Systems, Serie)World Scientific Publishing Co., Inc. River Edge, NJ, USA200610.1142/6141Search in Google Scholar

Alexander Frank Jr, Price Dorielle T, Bhansali, Shekhar, Optimization of Interdigitated Electrode (IDE) Arrays for Impedance Based Evaluation of Hs 578T Cancer Cells, J. Phys.: Conf. Ser. 224 012134, Volume 224, Issue 1, pp. 012134 (2010).AlexanderFrank JrPriceDorielle TBhansali, Shekhar, Optimization of Interdigitated Electrode (IDE) Arrays for Impedance Based Evaluation of Hs 578T Cancer CellsJ. PhysConf. Ser. 224 012134Volume 224Issue 10121342010Search in Google Scholar