1. bookVolume 66 (2017): Issue 2 (June 2017)
Journal Details
First Published
04 Mar 1952
Publication timeframe
4 times per year
access type Open Access

Intracellular Siderophore Detection in an Egyptian, Cobalt-Treated F. solani Isolate Using SEM-EDX with Reference to its Tolerance

Published Online: 28 Jun 2017
Volume & Issue: Volume 66 (2017) - Issue 2 (June 2017)
Page range: 235 - 243
Received: 05 Sep 2016
Accepted: 12 Jan 2017
Journal Details
First Published
04 Mar 1952
Publication timeframe
4 times per year

An Egyptian, plant pathogenic Fusarium solani isolate was grown on cobalt concentrations of 0, 50, 200, 500, 800, and 1000 ppm. The isolate survived concentrations up to 800 ppm, however failed to grow at 1000 ppm. Morphology and elemental analysis of the isolate under the investigated Co concentrations were studied using Scanning electron microscopy (SEM) and energy dispersive X-ray microanalysis (EDX). The isolate reserved its morphology up to a concentration of 200 ppm. Morphological distortions were dramatic at 500 and 800 ppm. EDX detected Co uptake through the hyphae, microconidia, macroconidia, and chlamydospores. Iron, calcium, and potassium were also detected. EDX results showed a linear relationship between Co% and Fe% up to a concentration of 500 ppm reflecting the possible ability of the isolate to synthesize intracellular siderophores storing iron and their release from the vacuoles. The participation of such siderophores in conferring tolerance against cobalt is discussed. At 800 ppm, the % of Fe was greatly reduced with an accompanying increase in morphological distortions and absence of microconidia. Increasing the implicated cobalt concentrations resulted in increasing the percentages of the chelated cobalt reflecting the possible implication of the cell wall as well as extracellular siderophores in the uptake of cobalt. The current results recommend the absence of cobalt in any control regime taken to combat the investigated F. solani isolate and highlights the accomplishment of biochemical, ultrastructural, and molecular studies on such isolate to approve the production of siderophores and the role of cell wall in cobalt uptake.

Key words

Abdul-Tawab K.I. and Z.T. Maqsood. 2007. Critical behavior of Iron (III) with a typical catecholate siderophore. Sci. Iran 14: 106–111. Search in Google Scholar

Akthar N.M.D., K.S. Sastry and P.M. Mohan. 1996. Mechanism of metal ion biosorption by fungal biomass. Biometals 9: 21–28.10.1007/BF00188086 Search in Google Scholar

Al-Yemeni M.N. and A.R. Hashem. 2006. Heavy Metals and Microbial Analysis of Soil Samples Collected from Aramco Gulf Operation Company (AGOC), Al-Khafji, Saudi Arabia. S. J. Biologic. Sci. 13: 129–133. Search in Google Scholar

Anahida S., S. Yaghmaei and Z. Ghobadinejad. 2011. Heavy metal tolerance of fungi. Scientia Iranica C 18: 502–508.10.1016/j.scient.2011.05.015 Search in Google Scholar

Andreini C., I. Bertini, G. Cavallaro, G.L. Holliday and J.M. Thornton. 2008. Metal ions in biological catalysis: from enzyme databases to general principles. J. Biol. Inorg. Chem. 13: 1205–1218.10.1007/s00775-008-0404-5 Search in Google Scholar

Bellion M., M. Courbot, C. Jacob, D. Blaudez and M. Chalot. 2006. Extracellular and cellular mechanisms sustaining metal tolerance in ectomycorrhizal fungi, FEMS Microbiol. Lett. 254: 173–181.10.1111/j.1574-6968.2005.00044.x Search in Google Scholar

Bogale M., E.T. Steenkamp, M.J. Wingfield and B.D. Wingfield. 2009. Diverse Fusarium solani isolates colonize agricultural environments in Ethiopia. Eur. J. Plant Pathol. 124: 369–378.10.1007/s10658-008-9422-y Search in Google Scholar

Braud A., V. Geoffroy, F. Hoegy, G.L.A. Mislin and I.J. Schalk. 2010. The siderophores pyoverdine and pyochelin are involved in Pseudomonas aeruginosa resistence against metals: Another biological function of these two siderophores. Environ. Microbiol. Rep. 2: 419–425.10.1111/j.1758-2229.2009.00126.x Search in Google Scholar

Bunn H.F., J. Gu, L.E. Huang, J.W. Park and H. Zhu. 1998. Erythropoietin: a model system for studying oxygen dependent gene regulation. J. Exp. Biol. 201: 1197–1201.10.1242/jeb.201.8.1197 Search in Google Scholar

de Locht M., J.R. Boelaert and Y.J. Schneider. 1994. Iron uptake from ferrioxamine and from ferrirhizoferrin by germinating spores of Rhizopus microsporus. Biochem. Pharmacol. 47: 1843–1850.10.1016/0006-2952(94)90314-X Search in Google Scholar

Dordas C. 2008. Role of nutrients in controlling plant diseases in sustainable agriculture. A review. Agron. Sustain. Dev. 28: 33–46.10.1051/agro:2007051 Search in Google Scholar

Eisendle M., H. Oberegger, I. Zadra and H. Haas. 2003. The siderophore system is essential for viability of Aspergillus nidulans: functional analysis of two genes encoding l-ornithine N 5-monooxygenase (sidA) and a non-ribosomal peptide synthetase (sidC). Mol. Microbiol. 49: 359–37510.1046/j.1365-2958.2003.03586.x12828635 Search in Google Scholar

Eisendle M., M. Schrettl, C. Kragl, D. Muller, P. Illmer and H. Haas. 2006. The intracellular siderophore ferricrocin is involved in iron storage, oxidative-stress resistance, germination, and sexual development in Aspergillus nidulans. Eukaryotic Cell 5: 1596–1603. Search in Google Scholar

Expert D., T. Franza and A. Dellagi. 2012. Iron in plant-pathogen interactions, pp. 7–39. In: Expert D. and M.R. O’Brian (eds). Molecular Aspects of Iron Metabolism in Pathogenic and Symbiotic PlantMicrobe Associations. Springer Press, New York.10.1007/978-94-007-5267-2_2 Search in Google Scholar

Farrag R.M., M.M. Mohamadein and A.A. Mekawy. 2008. Scanning Electron microscopy and energy-dispersive X-Ray microanalysis of Penicillium brevicompactum treated with cobalt. Pol. J. Microbiol 57: 321–326. Search in Google Scholar

Farrag R.M. 2009. Ultrastructure, glutathione and low molecular weight proteins of Penicillium brevicompactum in response to cobalt. Pol. J. Microbiol. 58: 327–338. Search in Google Scholar

Goldberg M.A., S.P. Dunning and H.F. Bunn. 1988. Regulation of the erythropoietin gene: evidence that the oxygen sensor is a heme protein. Science 242: 1412–141510.1126/science.2849206 Search in Google Scholar

Haas H., I. Zadra, G. Stoffler and K. Angermayr. 1999. The Aspergillus nidulans GATA factor SREA is involved in regulation of siderophore biosynthesis and control of iron uptake. J. Biol. Chem. 274: 4613–4619.10.1074/jbc.274.8.4613 Search in Google Scholar

Haas H. 2012. Iron – a key nexus in the virulence of Aspergillus fumigatus. Front. Microbiol. 3: 28.10.3389/fmicb.2012.00028 Search in Google Scholar

Hashem A.R. and A.H. Bahkali. 1994. Toxicity of cobalt and nickel to Fusarium solani isolated from Saudi Arabian soil. Qatar Univ. Sci. J. 14: 63–65. Search in Google Scholar

Heldal M., S. Norland and O. Tumyr. 1985. X-ray microanalytic method for measurement of dry matter and elemental content of individual bacteria. Appl. Environ. Microbiol. 50: 1251–1257.10.1128/aem.50.5.1251-1257.1985 Search in Google Scholar

Hong J.W., J.Y. Park and G.M. Gadd. 2009. Pyrene degradation and copper and zinc uptake by Fusarium solani and Hypocrea lixii isolated from petrol station soil. J. Appl. Microbiol. 108: 2030–2040.10.1111/j.1365-2672.2009.04613.x Search in Google Scholar

Kapoor A. and T. Viraraghavan. 1997. Heavy metal biosorption sites in Aspergillus niger. Bioresour. Technol. 61: 221–227.10.1016/S0960-8524(97)00055-2 Search in Google Scholar

Lesuisse E. and P. Labbe. 1994. Reductive iron assimilation in Saccharomyces cerevisiae, pp. 149–178. In: Winkelmann G. and D.R. Winge (eds). Metal Ions in Fungi. Marcel Dekker, New York.10.1201/9781003067221-5 Search in Google Scholar

Lopez-Berges M.S., J. Capilla, D. Turra, L. Schafferer, S. Matthijs, C. Jochl, P. Cornelis, J. Guarro, H. Haas and A. Di Pietro. 2012. HapX-mediated iron homeostasis is essential for rhizosphere competence and virulence of the soil borne pathogen Fusarium oxysporum. Plant Cell 24: 3805–3822.10.1105/tpc.112.098624348030422968717 Search in Google Scholar

Maghsoodi V., J. Razavi and S. Yaghmaei. 2007. Production of Chitosan by submerged fermentation from Aspergillus niger. Sci. Iran. Trans. C 16: 180–184. Search in Google Scholar

Miethke M. and M.A. Search in Google Scholar

Marahiel 2007. Siderophore-based iron acquisition and pathogen control. Microbiol. Mol. Biol. Rev. 71: 413–451.10.1128/MMBR.00012-07216864517804665 Search in Google Scholar

Muraleedharan T.R., L. Lyengar and C. Venkobachar. 1994. Further insight into the mechanism of biosorption of heavy metals by Ganoderma lucidurn. Emviron. Technol. 15: 1015–1027.10.1080/09593339409385510 Search in Google Scholar

Neubauer U., B. Nowak, G. Furrer and R. Schulin. 2000. Heavy metal sorption on clay minerals affected by the siderophore desferrioxamine B. Environ. Sci. Technol. 34: 2749–2755.10.1021/es990495w Search in Google Scholar

Nyilasi I., T. Papp, M. Tako’, E. Nagy and C. Vagvolgyi. 2005. Iron gathering of opportunistic pathogenic fungi. A mini review. Acta Microbiol. Immunol. Hung. 52: 185–197.10.1556/AMicr.52.2005.2.416003938 Search in Google Scholar

Oide S., W. Moeder, S. Krasnoff, D. Gibson, H. Haas, K. Yoshioka and B.G. Turgeon. 2006. NPS6, encoding a nonribosomal peptide synthetase involved in siderophore-mediated iron metabolism, is a conserved virulence determinant of plant pathogenic ascomycetes. Plant Cell 18: 2836–2853. Search in Google Scholar

Oide S., S.B. Krasnoff, D.M. Gibson and B.G. Turgeon. 2007. Intracellular siderophores are essential for ascomycete sexual development in heterothallic Cochliobolus heterostrophus and homothallic Gibberellazeae. Eukaryot Cell 6: 1337–1353.10.1128/EC.00111-07195112417601875 Search in Google Scholar

Oide S., F. Berthiller, G. Wiesenberger, G. Adam and B.G. Turgeon. 2015. Individual and combined roles of malonichrome, ferricrocin, and TAFC siderophores in Fusarium graminearum pathogenic and sexual development. Front. Microbiol. 5: 759. Search in Google Scholar

Oliviera A. and M.E. Pampulha. 2006. Effects of long-term heavy metal contamination on soil microbial characteristics. J. Biosci Bioeng. 102: 157–161.10.1263/jbb.102.15717046527 Search in Google Scholar

Olivieri F., M.E. Zanetti, C.R. Oliva, A.A. Covarrubias and C.A. Casalongue. 2002. Characterization of an extracellular serine protease of Fusarium eumartii and its action on pathogenesis related proteins. Eur. J. Plant Pathol. 108: 63–72.10.1023/A:1013920929965 Search in Google Scholar

Philpott C.C. 2006. Iron uptake in fungi: A system for every source. Biochimica et Biophysica Acta 1763: 636–645.10.1016/j.bbamcr.2006.05.00816806534 Search in Google Scholar

Poltronieri L.S., D.R. Trinidad, F.C. Albuquerque, M.L.R. Duarte and S.S. Cardoso. 2002. Incidence of Fusarium solani in annulled in the state of Para. Brazil. Fitopatol. Bras. 27: 544.10.1590/S0100-41582002000500019 Search in Google Scholar

Saad A.M. 2014. Biosorption of soluble and insoluble inorganic compounds by non-trained and cobalt-trained Mucor rouxii NRRL 1894 and Rhizopus sp. biomass. Eur. J. Biotechnol. Biosci. 2: 21–26. Search in Google Scholar

Schalk I.J., M. Hannauer and A. Braud. 2011. New roles for bacterial siderophores in metal transport and tolerance. Environ. Microbiol. 13: 2844–2854.10.1111/j.1462-2920.2011.02556.x21883800 Search in Google Scholar

Schrettl M., E. Bignell, C. Kragl, Y. Sabiha, O. Loss, M. Eisendle, A. Wallner, H.N. Arst, K. Haynes and H. Haas. 2007. Distinct roles for intra and extracellular siderophores during Aspergillus fumigatus infection. PLoS Pathog. 3: e128.10.1371/journal.ppat.0030128197111617845073 Search in Google Scholar

Seneviratne M. and M. Vithanage. 2015. The role of siderophores on plants under heavy meal stress: a view from the rhizosphere. J. Botanic. Sci. 4: 23–29. Search in Google Scholar

Sow F.B., G.R. Alvarez, R.P. Gross, A.R. Satoskar, L.S. Schlesinger, B.S. Zwilling and W.P. Lafuse. 2009. Role of STAT1, NF-kappaB and C/EBP beta in the macrophage transcriptional regulation of hepsidin by mycobacterial infection and IFN-gamma. J. Leukoc. Biol. 86: 1247–1258. Search in Google Scholar

Stadler J.A. and R. Schweyen. 2002. The yeast iron regulon is induced upon cobalt stress and crucial for cobalt tolerance. J. Biol. Chem. 277: 39649–39654.10.1074/jbc.M203924200 Search in Google Scholar

Symeonidis A. and M. Marangos. 2012. Iron and microbial growth, pp. 289–330. In: Priti R. (eds.) Insight and Control of Infectious Disease in Global Scenario. Intech Press.10.5772/34760 Search in Google Scholar

Thelander L., A. Graslund and M. Thelander. 1983. Continual presence of oxygen and iron required for mammalian ribonucleotide reduction: Possible regulation mechanism. Biochem. Biophys. Res. Commun. 110: 859–865.10.1016/0006-291X(83)91040-9 Search in Google Scholar

Tsekova K., D. Christova and M. Ianis. 2006. Heavy Metal Biosorption sites in Penicillium cyclopium. J. Appl. Sci. Environ. 10: 117–121.10.4314/jasem.v10i3.17341Search in Google Scholar

van der Helm D. and G. Winkelmann. 1994. Hydroxamates and polycarboxylates as iron transport agents (siderophores) in fungi, pp. 39–98. In: Winkelmann G. and D. Winge (eds.) Metal Ions in Fungi. Marcel Dekker, New York.10.1201/9781003067221-2 Search in Google Scholar

Wallner A., M. Blatzer, M. Schrettl, B. Sarg, H. Lindner and H. Haas. 2009. Ferricrocin, a siderophore involved in intra and transcellular iron distribution in Aspergillus fumigatus. Appl. Environ. Microbiol. 75: 4194–4196. Search in Google Scholar

Wang Y, Q. Li, J. Shi, Q. Lin, X. Chen, W. Wu and Y. Chen. 2008. Assessment of microbial activity and bacterial community composition in the rhizosphere of a copper accumulator and a nonaccumulator. Soil Biol. Biochem. 40: 1167–1177.10.1016/j.soilbio.2007.12.010 Search in Google Scholar

Winkelmann G. 1991. Importance of siderophores in fungal growth, sporulation and spore germination, pp. 49–65. In: Hawksworth D.L. (ed.) Frontiers in Mycology. CAB International Press, Wallingford.Search in Google Scholar

Winkelmann G. 1992. Structures and functions of fungal siderophores containing hydroxamate and complexone type iron binding ligands. Mycol. Res. 96: 529–534.10.1016/S0953-7562(09)80976-3 Search in Google Scholar

Yeterian E., L.W. Martin, I.L. Lamont and I.J. Schalk. 2010. An efflux pump is required for siderophore recycling by Pseudomonas aeruginosa. Environ. Microbial. Rep. 2: 412–418.10.1111/j.1758-2229.2009.00115.x23766114Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo