1. bookVolume 66 (2017): Issue 2 (June 2017)
Journal Details
License
Format
Journal
eISSN
2544-4646
First Published
04 Mar 1952
Publication timeframe
4 times per year
Languages
English
access type Open Access

Molecular Study of Indigenous Bacterial Community Composition on Exposure to Soil Arsenic Concentration Gradient

Published Online: 28 Jun 2017
Volume & Issue: Volume 66 (2017) - Issue 2 (June 2017)
Page range: 209 - 221
Received: 13 Apr 2016
Accepted: 30 Sep 2016
Journal Details
License
Format
Journal
eISSN
2544-4646
First Published
04 Mar 1952
Publication timeframe
4 times per year
Languages
English
Abstract

Community structure of bacteria present in arsenic contaminated agricultural soil was studied with qPCR (quantitative PCR) and DGGE (Denaturing Gradient Gel Electrophoresis) as an indicator of extreme stresses. Copy number of six common bacterial taxa (Acidobacteria, Actinobacteria, α-, β- and γ-Proteobacteria, Firmicutes) was calculated using group specific primers of 16S rDNA. It revealed that soil contaminated with low concentration of arsenic was dominated by both Actinobacteria and Proteobacteria but a shift towards Proteo bacteria was observed with increasing arsenic concentration, and number of Actinobacteria eventually decreases. PCA (Principle Component Analysis) plot of bacterial community composition indicated a distinct resemblance among high arsenic content samples, while low arsenic content samples remained separated from others. Cluster analysis of soil parameters identifies three clusters, each of them was related to the arsenic content. Further, cluster analysis of 16S rDNA based DGGE fingerprint markedly distributed the soil bacterial populations into low (< 10 ppm) and high (> 10 ppm) arsenic content subgroups. Following analysis of diversity indices shows significant variation in bacterial community structure. MDS (Multi Dimensional Scaling) plot revealed distinction in the distribution of each sample denoting variation in bacterial diversity. Phylogenetic sequence analysis of fragments excised from DGGE gel revealed the presence of γ-Proteobacteria group across the study sites. Collectively, our experiments indicated that gradient of arsenic contamination affected the shape of the soil bacterial population by significant structural shift.

Keywords

Achour A.R., P. Bauda and P. Billard. 2007. Diversity of arsenite transporter genes from arsenic-resistant soil bacteria. Res. Microbiol. 158: 128–137.10.1016/j.resmic.2006.11.00617258434 Search in Google Scholar

Aksornchu P., P. Prasertsan and V. Sobhon. 2008. Isolation of arsenic-tolerant bacteria from arsenic-contaminated soil. Songklanakarin J. Sci. Technol. 30: 95–102. Search in Google Scholar

Alele P.O., D. Sheil, Y. Surget-Groba, S. Lingling and C.H. Cannon. 2014. How does conversion of natural tropical rainforest ecosystems affect soil bacterial and fungal communities in the Nile River watershed of Uganda? PLoS ONE. 9: 1–13.10.1371/journal.pone.0104818413060425118069 Search in Google Scholar

Altschul S.F., T.L. Madden, A.A. Schaffer, J. Zhang, Z. Zhang, W. Miller and D.J. Lipman. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25: 3389–3402.10.1093/nar/25.17.33891469179254694 Search in Google Scholar

Anyanwu C.U. and C.E. Ugwu. 2010. Incidence of arsenic resistant bacteria isolated from a sewage treatment plant. Int. J. Basic Appl. Sci. 10: 43–47. Search in Google Scholar

Bachate S.P., V. Cavalca and V. Andreoni. 2009. Arsenic-resistant bacteria isolated from agricultural soils of Bangladesh and characterization of arsenate-reducing strains. J. Appl. Microbiol. 107: 145–156.10.1111/j.1365-2672.2009.04188.x19291237 Search in Google Scholar

Banerjee S., S. Datta, D. Chattyopadhyay and P. Sarkar. 2011. Arsenic accumulating and transforming bacteria isolated from contaminated soil for potential use in bioremediation. J. Environ. Sci. Heal. A. 46: 1736–1747.10.1080/10934529.2011.62399522175878 Search in Google Scholar

Baz S.E., M. Baz, M. Barakate, L. Hassani, A.E. Gharmali and B. Imziln. 2015. Resistance to and accumulation of heavy metals by Actinobacteria isolated from abandoned mining areas. Sci. World. J. ID: 761834.10.1155/2015/761834433971625763383 Search in Google Scholar

Bhattacharya P., G. Jacks, K.M. Ahmed, J. Routh and A.A. Khan. 2002. Arsenic in ground water of the Bengal delta plain aquifers in Bangladesh. Bull. Environ. Contam. Tox. 69: 538–545.10.1007/s00128-002-0095-512232725 Search in Google Scholar

Bhattacharya P., A.C. Samal, J. Majumdar and S.C. Santra. 2009. Transfer of arsenic from groundwater and paddy soil to rice plant (Oryza sativa L.): a micro level study in West Bengal, India. World. J. Agri. Sci. 5(4): 425–431. Search in Google Scholar

Black C.A. 1965. Methods of soil analysis. Part 2. Chemical and microbiological properties, American Society of Agronomy. Inc, Publisher, Madison, Wisconsin, USA. Search in Google Scholar

Blas O.J.D. and N.R. Mateos. 1996. Determination of total arsenic and selenium in soils and plants by atomic absorption spectrophotometry with hydride generation flow injection analysis coupled techniques. J. AOAC Inter. 79: 764–768.10.1093/jaoac/79.3.764Search in Google Scholar

Bray R.H. and L.T. Kurtz. 1945. Determination of total, organic, and available forms of phosphorus in soils. Soil Sci. 59: 39–45. Search in Google Scholar

Bremner J.M. 1965. Organic forms of nitrogen. pp. 1238–1255. In: Black C.A. Part II (eds). Methods of Soil Analysis. American Society of Agronomy. Madison, Wisconsin, USA.10.2134/agronmonogr9.2.c34 Search in Google Scholar

Breugelmans P., P.J. D’Huys, R.D. Mot and D. Springael. 2007. Characterization of novel linuron-mineralizing bacterial consortia enriched fromlong-termlinuron-treatedagricultural soils. FEMS Microbiol. Ecol. 62: 374–385.10.1111/j.1574-6941.2007.00391.x17991021 Search in Google Scholar

Cai L., G. Liu, C. Rensing and G. Wang. 2009. Genes involved in arsenic transformation and resistance associated with different levels of arsenic-contaminated soils. BMC Microbiol. 9: 4.10.1186/1471-2180-9-4 Search in Google Scholar

Dewis J. and F. Freitas. 1984. Physical and chemical methods of soil and water analysis, pp. 51–106. Oxford and IBH Publishing Company, New Delhi. Search in Google Scholar

Dhal P.K., E. Islam, S.K. Kazy and P. Sar. 2011. Culture-independent molecular analysis of bacterial diversity in uranium-ore/mine waste-contaminated and non-contaminated sites from uranium mines. 3Biotech. 1: 261–272.10.1007/s13205-011-0034-4 Search in Google Scholar

Fakruddin M. and K.S.B. Mannan. 2013. Methods for analyzing diversity of microbial communities in natural environments. Ceylon J. Sci. (Bio Sci). 42: 19–33.10.4038/cjsbs.v42i1.5896 Search in Google Scholar

Fantroussi S.E., L. Verschuere, W. Verstraete and E.M. Top. 1999. Effect of phenylurea herbicides on soil microbial communities estimated by analysis of 16S rRNA gene fingerprints and communitylevel physiological profiles. Appl. Environ. Microbiol. 65: 982–988.10.1128/AEM.65.3.982-988.1999 Search in Google Scholar

Felczykowska A., A. Krajewska, S. Zielinska and J.M. Los. 2015. Sampling, metadata and DNA extraction-important steps in metagenomic studies. Acta. Biochim. Pol. 62:151–60.10.18388/abp.2014_916 Search in Google Scholar

Fierer N., J.A. Jackson, R. Vilgalys and R.B. Jackson. 2005. Assessment of soil microbial community structure by use of taxon-specific quantitative PCR assays. Appl. Environ. Microbiol. 71(7): 4117–4120. Search in Google Scholar

Gafan G.P., V.S. Lucas, G.J. Roberts, A. Petrie, M. Wilson and D.A. Spratt. 2005. Statistical analyses of complex denaturing gradient gel electrophoresis profiles. J. Clin. Microbiol. 43: 3971–3978.10.1128/JCM.43.8.3971-3978.2005 Search in Google Scholar

Ghodsi H., M. Hoodaji, A. Tahmourespour and M.M. Gheisari. 2011. Investigation of bioremediation of arsenic by bacteria isolated from contaminated soil. Afr. J. Microbiol. Res. 5: 5889–5895.10.5897/AJMR11.837 Search in Google Scholar

Ghosh D., P. Bhadury and J. Routh. 2014. Diversity of arsenite oxidizing bacterial communities in arsenic-rich deltaic aquifers in West Bengal, India. Front. Microbiol. 5: 1–14. Search in Google Scholar

Gillan D.C., B. Danis, P. Pernet, G. Joly and P. Dubois. 2005. Structure of sediment-associated microbial communities along a heavy-metal contamination gradient in the marine environment. Appl. Environ. Microbiol. 71: 679–690.10.1128/AEM.71.2.679-690.2005 Search in Google Scholar

Goswami R., S. Mukherjee, V.S. Rana, D.R. Saha, R. Raman, P.K. Padhy and S. Mazumder. 2015. Isolation and characterization of arsenic-resistant bacteria from contaminated water-bodies in West Bengal, India, Geomicrobiol. J. 32:17–26. Search in Google Scholar

Guha Mazumder D.N. 2003. Chronic arsenic toxicity: clinical features, epidemiology, and treatment: experience in West Bengal. J. Environ. Sci. Health. A Tox. Hazard. Subst. Environ. Eng. 38(1): 141–163. Search in Google Scholar

Hanway J.J. and H. Heidel. 1952. Soil analyses methods as used in Iowa State College Soil Testing Laboratory. Iowa. Agri. 57: 1–31. Search in Google Scholar

Hedrick D.B., A. Peacock, J.R. Stephen, S.J. Macnaughton, J. Bruggemann and D.C. White. 2000. Measuring soil microbial community diversity using polar lipid fatty acid and denaturing gradient gel electrophoresis data. J. Microbiol. Meth. 41: 235–248.10.1016/S0167-7012(00)00157-3 Search in Google Scholar

Heikens A., G.M. Panaullah and A.A. Meharg. 2007. Arsenic behavior from ground water and soil to crops. Rev. Environ. Contam. Toxicol. 189: 43–87.10.1007/978-0-387-35368-5_317193736 Search in Google Scholar

Hossain M.A., M.K. Sengupta, S. Ahamed, M.M. Rahman, D. Mondal, D. Lodh, B. Das, B. Nayak, B.K. Roy, A. Mukherjee and others. 2005. Ineffectiveness and poor reliability of arsenic removal plants in West Bengal, India. Environ. Sci. Technol. 39: 4300–4306.10.1021/es048703u15984813 Search in Google Scholar

Huang J., X. Sheng, L. He, Z. Huang, Q. Wang and Z. Zhang. 2013. Characterization of depth-related changes in bacterial community compositions and functions of a paddy soil profile. FEMS Microbiol. Lett. 347: 33–42.10.1111/1574-6968.1221823865584 Search in Google Scholar

Islam E. and P. Sar. 2011. Molecular assessment on impact of uranium ore contamination in soil bacterial diversity. Int. Biodeterioration. Biodegrad. 65: 1043–1051.10.1016/j.ibiod.2011.08.005 Search in Google Scholar

Jackson M.L. 1973. Soil Chemical Analysis. Prentice Hall of India Private Limited, New Delhi. Search in Google Scholar

Lee C., S. Lee, S.G. Shin and S. Hwang. 2008. Real-time PCR determination of rRNA gene copy number: absolute and relative quantification assays with Escherichia coli. Appl. Microbiol. Biotechnol. 78: 371–376.10.1007/s00253-007-1300-618074129 Search in Google Scholar

Maiwore J., N.L. Tatsadjieu, T. Goli, D. Montet and C.M.F. Mbofung. 2012. Influence of technological treatments on bacterial communities in tilapia (Oreochromis niloticus) as determined by 16S rDNA fingerprinting using polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE). Afr. J. Biotechnol. 11: 8586–8593.10.5897/AJB11.920 Search in Google Scholar

Majumder A., S. Ghosh, N. Saha, S.C. Kole and S. Sarkar. 2013. Arsenic accumulating bacteria isolated from soil for possible application in bioremediation. J. Environ. Biol. 34: 841–846. Search in Google Scholar

Mallick I., S.T. Hossain, S. Sinha and S.K. Mukherjee. 2014. Brevibacillus sp. KUMAs2, a bacterial isolate for possible bio’ remediation of arsenic in rhizosphere. Ecotox. Environ. Safe. 107: 236–244. Search in Google Scholar

Mccaig A.E., L.A. Glover and J.I. Prosser. 1999. Molecular analysis of bacterial community structure and diversity in unimproved and improved upland grass pastures. Appl. Environ. Microbiol. 65: 1721–1730.10.1128/AEM.65.4.1721-1730.19999124310103273 Search in Google Scholar

Moura A., M. Tacao, I. Henriques, J. Dias, P. Ferreira and A. Correia. 2009. Characterization of bacterial diversity in two aerated lagoons of a waste water treatment plant using PCR-DGGE analysis. Microbiol. Res. 164: 560–569.10.1016/j.micres.2007.06.00517681740 Search in Google Scholar

Muhling M., J. Woolven-Allen, J.C. Murrell and I. Joint. 2008. Improved group-specific PCR primers for denaturing gradient gel electrophoresis analysis of the genetic diversity of complex microbial communities. ISME J. 2: 379–392.10.1038/ismej.2007.9718340335 Search in Google Scholar

Mukherjee A.B and P. Bhattacharya. 2001. Arsenic in ground water in the Bengal Delta Plain: slow poisoning in Bangladesh. Environ. Rev. 9: 189–220.10.1139/a01-007 Search in Google Scholar

Olioso D., M. Boaretti, M. Ligozzi, G.L. Cascio and R. Fontana. 2007. Detection and quantification of hepatitis B virus DNA by SYBR green real-time polymerase chain reaction. Eur. J. Clin. Microbiol. Infect. Dis. 26:43–50.10.1007/s10096-006-0223-y17216291 Search in Google Scholar

Paul D., S.K. Kazy, A.K. Gupta, T. Pal and P. Sar. 2015. Diversity, metabolic properties and arsenic mobilization potential of indigenous bacteria in arsenic contaminated groundwater of West Bengal, India. PLoS ONE 10(3): e0118735.10.1371/journal.pone.0118735 Search in Google Scholar

Piper C.S. 1966. Soil and plant analysis. Hans Publishers, Bombay, India. Search in Google Scholar

Philippot L., D. Tscherko, D. Bru and E. Kandeler. 2011. Distribution of high bacterial taxa across the chronosequence of two alpine glacier forelands. Microb. Ecol. 61: 303–312.10.1007/s00248-010-9754-y Search in Google Scholar

Pogacic T., N. Kelava, S. Zamberlin, I. Dolencic-Spehar and D. Samarzija. 2010. Methods for culture-independent identification of lactic acid bacteria in dairy products. Food. Technol. Biotechnol. 48(1): 3–10. Search in Google Scholar

Rahman M.A., H. Hasegawa, M.M. Rahman, M.A. Rahman and M.A.M. Miah. 2007. Accumulation of arsenic in tissues of rice plant (Oryza sativaL.) and its distribution in fractions of rice grain. Chemo sphere. 69: 942–948.10.1016/j.chemosphere.2007.05.044 Search in Google Scholar

Ranjard L., F. Poly and S. Nazaret. 2000. Monitoring complex bacterial communities using culture-independent molecular techniques: application to soil environment. Res. Microbiol. 151: 167–177.10.1016/S0923-2508(00)00136-4 Search in Google Scholar

Saitou N. and M. Nei. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406–425. Search in Google Scholar

Schabereiter-Gurtner C., W. Lubitz and S. Rolleke. 2003. Application of broad-range 16S rRNA PCR amplification and DGGE fingerprinting for detection of tick-infecting bacteria. J. Microbiol. Meth. 52: 251–260.10.1016/S0167-7012(02)00186-0 Search in Google Scholar

Schmidt A., G. Haferburg, M. Sineriz, D. Merten, G. Buchel and E. Kothe. 2005. Heavy metal resistance mechanisms in Actinobacteria for survival in AMD contaminated soils. Chem. Erde Geochem. 65(S1):131–144.10.1016/j.chemer.2005.06.006 Search in Google Scholar

Sharma R, R. Ranjan, R.K. Kapardar, A. Grover. 2005. ‘Unculturable’ bacterial diversity: An untapped resource. Curr. Sci. 89: 72–77. Search in Google Scholar

Sheik C.S., T.W. Mitchell, F.Z. Rizvi, Y. Rehman, M. Faisal, S. Hasnain, M.J. McInerney and L.R. Krumholz. 2012. Exposure of soil microbial communities to chromium and arsenic alters their diversity and structure. PLoS ONE 7(6): e40059.10.1371/journal.pone.0040059338695022768219 Search in Google Scholar

Shrivastava A., A. Barla, H. Yadav and S. Bose. 2014. Arsenic contamination in shallow groundwater and agricultural soil of Chakdaha block, West Bengal, India. Front. Environ. Sci. 2: 1–9.10.3389/fenvs.2014.00050 Search in Google Scholar

Singh N. 2011. Bioremediation of arsenic by bacteria isolated from arsenic contaminated marine environment of Goa harbor of India. Int. J. Pharm. Bio. Sci. 2: 629–639. Search in Google Scholar

Smalla K., G. Wieland, A. Buchner, A. Zock, J. Parzy, S. Kaiser, N. Roskot, H. Heuer, G. Berg. 2001. Bulk and rhizosphere soil bacterial communities studied by denaturing gradient Gel electrophoresis: plant-dependent enrichment and seasonal shifts revealed. Appl. Environ. Microbiol. 67: 4742–4751.10.1128/AEM.67.10.4742-4751.20019322711571180 Search in Google Scholar

Smit E., P. Leeflang, S. Gommans, J.V.D. Broek, S.V. Mil and K. Wernars. 2001. Diversity and seasonal fluctuations of the dominant members of the bacterial soil community in a wheat field as determined by cultivation and molecular methods. Appl. Environ. Microbiol. 67: 2284–2291.10.1128/AEM.67.5.2284-2291.20019286811319113 Search in Google Scholar

Sobolev D. and M.F.T. Begonia. 2008. Effects of heavy metal contamination upon soil microbes: lead-induced changes in general and denitrifying microbial communities as evidenced by molecular markers. Int. J. Environ. Res. Public Health. 5: 450–456.10.3390/ijerph5050450370000719151442 Search in Google Scholar

Thompson J.D., D.G. Higgins and T.J. Gibson. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic. Acids Res. 22: 4673-4680. Search in Google Scholar

Vartoukian S.R., R.M. Palmer and W.G. Wade. 2010. Strategies for culture of ‘unculturable’ bacteria. FEMS Microbiol. Lett. 309: 1–7.10.1111/j.1574-6968.2010.02000.x20487025 Search in Google Scholar

Xiong J., L. Wu, S. Tu, J.D.V. Nostrand, Z. He, J. Zhou and V. Wang. 2010. Microbial communities and functional genes associated with soil arsenic contamination and the rhizosphere of the arsenic hyperaccumulating plant Pteris vittata L. Appl. Environ. Microbiol. 76: 7277–7284.10.1128/AEM.00500-10297621820833780 Search in Google Scholar

Yuan S., D.B. Cohen, J. Ravel, Z. Abdo, L.J. Forney. 2012. Evaluation of methods for the extraction and purification of DNA from the human microbiome. PLoS ONE 11(9): e0163148.10.1371/journal.pone.0033865331154822457796 Search in Google Scholar

Yu Z. and M. Morrison. 2004. Comparisons of different hypervariable regions of rrs genes for use in fingerprinting of microbial communities by PCR-denaturing gradient gel electrophoresis. Appl. Environ. Microbiol. 70: 4800–4806.10.1128/AEM.70.8.4800-4806.200449234815294817Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo