1. bookVolume 66 (2017): Issue 1 (March 2017)
Journal Details
License
Format
Journal
eISSN
2544-4646
First Published
04 Mar 1952
Publication timeframe
4 times per year
Languages
English
access type Open Access

Suppressive Effect of Trichoderma spp. on toxigenic Fusarium species

Published Online: 30 Mar 2017
Volume & Issue: Volume 66 (2017) - Issue 1 (March 2017)
Page range: 85 - 100
Received: 25 Feb 2016
Accepted: 05 Dec 2016
Journal Details
License
Format
Journal
eISSN
2544-4646
First Published
04 Mar 1952
Publication timeframe
4 times per year
Languages
English
Abstract

The aim of the present study was to examine the abilities of twenty-four isolates belonging to ten different Trichoderma species (i.e., Trichoderma atroviride, Trichoderma citrinoviride, Trichoderma cremeum, Trichoderma hamatum, Trichoderma harzianum, Trichoderma koningiopsis, Trichoderma longibrachiatum, Trichoderma longipile, Trichoderma viride and Trichoderma viridescens) to inhibit the mycelial growth and mycotoxin production by five Fusarium strains (i.e., Fusarium avenaceum, Fusarium cerealis, Fusarium culmorum, Fusarium graminearum and Fusarium temperatum). Dual-culture bioassay on potato dextrose agar (PDA) medium clearly documented that all of the Trichoderma strains used in the study were capable of influencing the mycelial growth of at least four of all five Fusarium species on the fourth day after co-inoculation, when there was the first apparent physical contact between antagonist and pathogen. The qualitative evaluation of the interaction between the colonies after 14 days of co-culturing on PDA medium showed that ten Trichoderma strains completely overgrew and sporulated on the colony at least one of the tested Fusarium species. Whereas, the microscopic assay provided evidence that only T. atroviride AN240 and T. viride AN255 formed dense coils around the hyphae of the pathogen from where penetration took place. Of all screened Trichoderma strains, T. atroviride AN240 was also found to be the most efficient (69–100% toxin reduction) suppressors of mycotoxins (deoxynivalenol, 3-acetyl-deoxynivalenol, 15-acetyl-deoxynivalenol, nivalenol, zearalenone, beauvericin, moniliformin) production by all five Fusarium species on solid substrates. This research suggests that T. atroviride AN240 can be a promising candidate for the biological control of toxigenic Fusarium species.

Keywords

Almeida F.B., F.M. Cerqueira, N. Silva Rdo, C.J. Ulhoa and A.L. Lima. 2007. Mycoparasitism studies of Trichoderma harzianum strains against Rhizoctonia solani: evaluation of coiling and hydrolytic enzyme production. Biotechnol. Lett. 29: 1189–1193.10.1007/s10529-007-9372-z17534583 Search in Google Scholar

Altinok H.H. 2009. In vitro production of fumonisin B1 and B2 by Fusarium moniliforme and the biocontrol activity of Trichoderma harzianum. Ann. Microbiol. 59: 509–516.10.1007/BF03175139 Search in Google Scholar

Amarasinghe C.C., S.A. Tittlemier and W.G.D. Fernando. 2014. Nivalenol-producing Fusarium cerealis associated with fusarium head blight in winter wheat in Manitoba, Canada. Plant Pathol. 64: 988–995. Search in Google Scholar

Amin F., V.K. Razdanm, F.A. Mohidm, K.A. Bhat and S. Bandaym. 2010. Potential of Trichoderma species as biocontrol agents of soil borne fungal propagules. J. Phytopathol. 10: 38–41. Search in Google Scholar

Anees M., A. Tronsmo, V. Edel-Hermann, L.G. Hjeljord, C. Héraud and C. Steinberg. 2010. Characterization of field isolates of Trichoderma antagonistic against Rhizoctonia solani. Fungal Biol. 141: 691–701.10.1016/j.funbio.2010.05.00720943179 Search in Google Scholar

Benítez T., A.M. Ricón, C.M Limón and A.C. Codón. 2004. Biocontrol mechanisms of Trichoderma strains. Int. Microbiol. 7: 249–260. Search in Google Scholar

Bennett J.W. and M. Klich. 2003. Mycotoxins. Clin. Microbiol. Rev. 16: 497–516.10.1128/CMR.16.3.497-516.200316422012857779 Search in Google Scholar

Bily A.C., L.M. Reid, M.E. Savard, R. Reddy, B.A. Blackwell, C.M. Campbell, A. Krantis, T. Durst, B.J. Philogène, J.T. Arnason and others. 2004. Analysis of Fusarium graminearum mycotoxins in different biological matrices by LC/MS. Mycopathologia 157: 117–126.10.1023/B:MYCO.0000012218.27359.ec Search in Google Scholar

Błaszczyk L., D. Popiel, J. Chełkowski, G. Koczyk, G.J. Samuels, K. Sobieralski and M. Siwulski. 2011. Species diversity of Trichoderma in Poland. J. Appl. Genet. 52: 233–243.10.1007/s13353-011-0039-z308880321465156 Search in Google Scholar

Bottalico A. and G. Perrone. 2002. Toxigenic Fusarium species and mycotoxins associated with head blight in small-grain cereals in Europe. Eur. J. Plant Pathol. 108: 611–624.10.1007/978-94-010-0001-7_2 Search in Google Scholar

Buśko M., J. Chełkowski, D. Popiel and J. Perkowsk. 2008. Solid substrate bioassay to evaluate impact of Trichoderma on trichothecene mycotoxin production by Fusarium species. J. Sci. Food Agr. 88: 536–541.10.1002/jsfa.3119 Search in Google Scholar

Cooney J.M., D.R. Lauren and M.E. Menna. 2001. Impact of competitive fungi on trichothecene production by Fusarium graminearum. J. Agric. Food Chem. 49: 522–526.10.1021/jf000637211170621 Search in Google Scholar

Czembor E., Ł. Stępień and A. Waśkiewicz. 2014. Fusarium temperatum as a new species causing ear rot on maize in Poland. Plant Dis. 98: 1001.10.1094/PDIS-11-13-1184-PDN30708873 Search in Google Scholar

Druzhinina I.S., V. Seidl-Seiboth, A. Herrera-Estrella, B.A. Horwitz, C.M. Kenerley, E. Monte, P.K. Mukherjee, S. Zeilinger, I.V. Grigoriev and C.P. Kubicek. 2011. Trichoderma: the genomics of opportunistic success. Nat. Rev. Microbiol. 16: 749–759.10.1038/nrmicro263721921934 Search in Google Scholar

Dubey S., M. Suresh and B. Singh. 2007. Evaluation of Trichoderma species against Fusarium oxysporum f. sp. ciceris for integrated management of chickpea wilt. Biol. Control 40: 118–127.10.1016/j.biocontrol.2006.06.006 Search in Google Scholar

Edington L.V., K.L. Khew and G. Barron. 1971. Fungitoxic spectrum of benzimidazole compounds. Phytopathol. 61: 42–44.10.1094/Phyto-61-42 Search in Google Scholar

Elmholt S. 2008. Mycotoxins in the soil environment, pp. 167–203. In: P. Karlovsky (ed.). Secondary metabolites in soil ecology. SpringerVerlag, Heidelberg, Berlin.10.1007/978-3-540-74543-3_9 Search in Google Scholar

Ferrigo D., A. Raiola, E. Piccolo, C. Scopel and R. Causin. 2014a. Trichoderma harzianum T22 induces in maize systemic resistance against Fusarium verticillioides. J. Plant Pathol. 96: 133–142. Search in Google Scholar

Ferrigo D., A. Raiola, R. Rasera and R. Causin. 2014b. Trichoderma harzianum seed treatment controls Fusarium verticillioides colonization and fumonisin contamination in maize under field conditions. Crop Prot. 65: 51–56.10.1016/j.cropro.2014.06.018 Search in Google Scholar

Glenn A.E. 2007. Mycotoxigenic Fusarium species in animal feed. Anim. Feed Sci. Tech. 137: 213–240.10.1016/j.anifeedsci.2007.06.003 Search in Google Scholar

Goertz A., S. Zühlke, M. Spiteller, U. Steiner, H.W. Dehne, C. Waalwijk, P.M. de Vries and E.C. Oerke. 2010. Fusarium species and mycotoxin profiles on commercial maize hybrids in Germany. Eur. J. Plant Pathol. 128: 101–111.10.1007/s10658-010-9634-9 Search in Google Scholar

Gromadzka K., J. Chełkowski, D. Popiel, P. Kachlicki, M. Kostecki and P. Goliński. 2009. Solid substrate bioassay to evaluate the effect of Trichoderma and Clonostachys on the production of zearalenone by Fusarium species. World Mycotoxin J. 2: 45–52.10.3920/WMJ2008.x046 Search in Google Scholar

Harman G.E., C.R. Howell, A. Viterbo, I. Chet and M. Lorito. 2004. Trichoderma species–opportunistic, avirulent plant symbionts. Nat. Rev. Microbiol. 2: 43–56. Search in Google Scholar

Hermosa R., A. Viterbo, I. Chet and E. Monte. 2012. Plantbeneficial effects of Trichoderma and of its genes. Microbiology 158: 17–25.10.1099/mic.0.052274-021998166 Search in Google Scholar

Inbar J. and I. Chet. 1992. Biomimics of fungal cell-cell recognition by use of lectin–coated nylon fibers. J. Bacteriol. 174: 1055–1059.10.1128/jb.174.3.1055-1059.19922061951732197 Search in Google Scholar

Inch S. and J. Gilbert. 2007. Effect of Trichoderma harzianum on perithecial production of Gibberella zeae on wheat straw. Biocontrol Sci. Techn. 17: 635–646.10.1080/09583150701408865 Search in Google Scholar

Jeleń H., L. Błaszczyk, J. Chełkowski, K. Rogowicz and J. Strakowska. 2014. Formation of 6-n-pentyl-2H-pyran-2-one (6-PAP) and other volatiles by different Trichoderma species. Mycol. Prog. 13: 589–600.10.1007/s11557-013-0942-2 Search in Google Scholar

Jestoi M., M. Rokka, T. Yli-Mattila, P. Parikka, A. Rizzo and K. Peltonen. 2004. Presence and concentrations of the Fusarium-related mycotoxins beauvericin, eniatins and moniliformin in Finnish grain samples. Food Addit. Contam. 21: 794–802. Search in Google Scholar

Jestoi M.N., S. Paavanen-Huhtala, P. Parikka and T. Yli-Mattila. 2008. In vitro and in vivo mycotoxin production of Fusarium species isolated from Finnish grains. Arch. Phytopathology Plant Protect. 41: 545–558.10.1080/03235400600881547 Search in Google Scholar

Kostecki M., H. Wiśniewska, G. Perrone, A. Ritieni, P. Golinski, J. Chełkowski and A. Logrieco. 1999. The effects of cereal substrate and temperature on production of beauvericin, moniliformin and fusaproliferin by Fusarium subglutinans ITEM – 1434. Food Addit. Contam. 16: 361–365. Search in Google Scholar

Kubicek C.P., M. Komon-Żelazowska and I.S. Druzhinina. 2008. Fungal genus Hypocrea/Trichoderma: from barcodes to biodiversity. J. Zhejiang Univ. Sci. B. 9: 753–763.10.1631/jzus.B0860015256573818837102 Search in Google Scholar

Logrieco A., G. Mulè, A. Moretti and A. Bottalico. 2002a. Toxigenic Fusarium species and mycotoxins associated with maize ear rot in Europe. Eur. J. Plant Pathol. 108: 597–609.10.1007/978-94-010-0001-7_1 Search in Google Scholar

Logrieco A., A. Rizzo, R. Ferracane and A. Ritieni. 2002b. Occurrence of beauvericin and enniatins in wheat affected by Fusarium avenaceum head blight. Appl. Environ. Microbiol. 68: 82–85.10.1128/AEM.68.1.82-85.200212655311772612 Search in Google Scholar

Logrieco A., A. Bottalico, G. Mule, A. Moretti and G. Perrone. 2003. Epidemiology of toxigenic fungi and their associated mycotoxins for some Mediterranean crops. Eur. J. Plant Pathol. 109: 645–667.10.1007/978-94-017-1452-5_1 Search in Google Scholar

Mańka K. 1974. Fungal communities as criterion for estimating the effect of the environment of plant diseases in Poland. ZPPNR, PAN. 160: 9–23. Search in Google Scholar

Matarese F., S. Sarrocco, S. Gruber, V. Seidl-Seiboth and G. Vannacci. 2012. Biocontrol of Fusarium head blight: interactions between Trichoderma and mycotoxigenic Fusarium. Microbiology 158: 98–106.10.1099/mic.0.052639-021980117 Search in Google Scholar

Nawrocka J. and U. Małolepsza. 2013. Diversity in plant systemic resistance induced by Trichoderma. Biol. Control 67: 149–156.10.1016/j.biocontrol.2013.07.005 Search in Google Scholar

Nayakaa S.C, S.R. Niranjanaa, A.C. Uday, S. Shankara, R. Niranjan, M.S. Reddyb, H.S. Prakasha and C.N. Mortensenc. 2008. Seed biopriming with novel strain of Trichoderma harzianum for the control of toxigenic Fusarium verticillioides and fumonisins in maize. Arch Phytopathology Plant Protect 43:1–19. Search in Google Scholar

Qualhato T.F., F.A.C. Lopes, A.S. Steindorff R.S. Brandão, R.S. Jesuino and C.J. Ulhoa. 2013. Mycoparasitism studies of Trichoderma species against three phytopathogenic fungi: evaluation of antagonism and hydrolytic enzyme production. Biotechnol. Lett. 35: 1461–1468.10.1007/s10529-013-1225-323690037 Search in Google Scholar

Palazzini J.M., M.L. Ramirez, A.M. Torres and S.N. Chulze. 2007. Potential biocontrol agents for Fusarium head blight and deoxynivalenol production in wheat. Crop Prot. 26: 1702–1710.10.1016/j.cropro.2007.03.004 Search in Google Scholar

Popiel D., H. Kwaśna, J. Chełkowski, Ł. Stępień and M. Laskowska. 2008. Impact of selected antagonistic fungi on Fusarium species – toxigenic cereal pathogens. Acta Mycol. 43: 29–40.10.5586/am.2008.004 Search in Google Scholar

Samuels G.J. 2006. Trichoderma: systematics, the sexual state, and ecology. Phytopathology 96: 95–206. Search in Google Scholar

Scauflaire J., M. Gourgue, A. Callebaut and F. Munaut. 2012. Fusarium temperatum, a mycotoxin-producing pathogen of maize. Eur. J. Plant Pathol. 133: 911–922. Search in Google Scholar

Schöneberg A., T. Musa, R.T. Voegele and S. Vogelgsang. 2015. The potential of antagonistic fungi for control of Fusarium graminearum and Fusarium crookwellense varies depending on the experimental approach. J. Appl. Microbiol. 118: 1165–1179.10.1111/jam.12775 Search in Google Scholar

Shaigan S., A. Seraji and S.A.M. Moghaddam. 2008. Identification and investigation on antagonistic effect of Trichoderma spp on tea seedlings white foot and root rot (Sclerotium rolfsii Sacc.) in vitro condition. Pak. J. Biol. Sci. 19:2346–2350. Search in Google Scholar

Stępień Ł., G. Koczyk and A. Waśkiewicz. 2011. FUM cluster divergence in fumonisins-producing Fusarium species. Fungal Biol. 115: 112–123.10.1016/j.funbio.2010.10.011 Search in Google Scholar

Strakowska J., L. Błaszczyk and J. Chełkowski. 2014. The significance of cellulolytic enzymes produced by Trichoderma in opportunistic lifestyle of this fungus. J. Basic. Microbiol. 54: S2–S13.10.1002/jobm.201300821 Search in Google Scholar

Tomczak M., H. Wiśniewska, L. Stępień, M. Kostecki, J. Chełkowski and P. Goliński. 2002. Deoxynivalenol, nivalenol and moniliformin in wheat samples with head blight (scab) symptoms in Poland (1998–2000). Eur. J. Plant Pathol. 108: 625–630. Search in Google Scholar

Verma M., S.K. Brar, R.D. Tyagi, R.Y. Surampalli and J.R. Valéro. 2007. Antagonistic fungi, Trichoderma spp.: panoply of biological control. Biochem. Eng. J. 37:1–20. Search in Google Scholar

Vinale F., K. Sivasithamparam, E.L. Ghisalberti, R. Marra, M.J. Barbetti, H. Li, S.L. Woo and M. Lorito. 2008a. A novel role for Trichoderma secondary metabolites in the interactions with plants. Physiol. Mol. Plant. Path. 72: 80–86.10.1016/j.pmpp.2008.05.005 Search in Google Scholar

Vinale F., K. Sivasithamparam, E.L. Ghisalberti, R. Marra, S.L. Woo and M. Lorito. 2008b. Trichoderma–plant–pathogen interactions. Soil Biol. Biochem. 40: 1–10.10.1016/j.soilbio.2007.07.002 Search in Google Scholar

Visconti A. and M. Pascale. 1998. Determination of zearalenone in corn by means of immunoaffinity clean-up and high-performance liquid chromatography with fluorescence detector. J. Chromatogr. A. 815: 133–140.10.1016/S0021-9673(98)00296-9 Search in Google Scholar

Wagacha J. and Muthomi J. 2007. Fusarium culmorum: infection process, mechanisms of mycotoxin production and their role in pathogenesis in wheat. Crop Prot. 26: 877–885. Search in Google Scholar

Wiśniewska H., Ł. Stępień, A. Waśkiewicz, M. Beszterda, T. Góral and J. Belter. 2014. Toxigenic Fusarium species infecting wheat heads in Poland. Cent. Eur. J. Biol. 9: 163–172.10.2478/s11535-013-0262-1 Search in Google Scholar

Woo S.L., M. Ruocco, F. Vinale, M. Nigro, R. Marra, N. Lombardi, A. Pascale, S. Lanzuise, G. Manganiello and M. Lorito. 2014. Trichoderma-based products and their widespread use in agriculture. TOMYCJ. 8: 71–126.10.2174/1874437001408010071 Search in Google Scholar

Yang D., Z.M. Geng, J.B. Yao, X. Zhang, P.P. Zhang and H.X. Ma. 2013. Simultaneous determination of deoxynivalenol, and 15- and 3-acetyldeoxynivalenol in cereals by HPLC-UV detection. World Mycotoxin J. 6: 117–125. Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo