1. bookVolume 65 (2016): Issue 3 (August 2016)
Journal Details
License
Format
Journal
eISSN
2544-4646
First Published
04 Mar 1952
Publication timeframe
4 times per year
Languages
English
access type Open Access

Characterization of a Highly Enriched Microbial Consortium Reductively Dechlorinating 2,3-Dichlorophenol and 2,4,6-Trichlorophenol and the Corresponding cprA Genes from River Sediment

Published Online: 26 Aug 2016
Volume & Issue: Volume 65 (2016) - Issue 3 (August 2016)
Page range: 341 - 352
Received: 04 Aug 2015
Accepted: 22 Mar 2016
Journal Details
License
Format
Journal
eISSN
2544-4646
First Published
04 Mar 1952
Publication timeframe
4 times per year
Languages
English
Abstract

Anaerobic reductive dechlorination of 2,3-dichlorophenol (2,3DCP) and 2,4,6-trichlorophenol (2,4,6TCP) was investigated in microcosms from River Nile sediment. A stable sediment-free anaerobic microbial consortium reductively dechlorinating 2,3DCP and 2,4,6TCP was established. Defined sediment-free cultures showing stable dechlorination were restricted to ortho chlorine when enriched with hydrogen as the electron donor, acetate as the carbon source, and either 2,3-DCP or 2,4,6-TCP as electron acceptors. When acetate, formate, or pyruvate were used as electron donors, dechlorination activity was lost. Only lactate can replace dihydrogen as an electron donor. However, the dechlorination potential was decreased after successive transfers. To reveal chlororespiring species, the microbial community structure of chlorophenol-reductive dechlorinating enrichment cultures was analyzed by PCR-denaturing gradient gel electrophoresis (DGGE) of 16S rRNA gene fragments. Eight dominant bacteria were detected in the dechlorinating microcosms including members of the genera Citrobac- ter, Geobacter, Pseudomonas, Desulfitobacterium, Desulfovibrio and Clostridium. Highly enriched dechlorinating cultures were dominated by four bacterial species belonging to the genera Pseudomonas, Desulfitobacterium, and Clostridium. Desulfitobacterium represented the major fraction in DGGE profiles indicating its importance in dechlorination activity, which was further confirmed by its absence resulting in complete loss of dechlorination. Reductive dechlorination was confirmed by the stoichiometric dechlorination of 2,3DCP and 2,4,6TCP to metabolites with less chloride groups and by the detection of chlorophenol RD cprA gene fragments in dechlorinating cultures. PCR amplified cprA gene fragments were cloned and sequenced and found to cluster with the cprA/pceA type genes of Dehalobacter restrictus.

Keywords

Alder A., C.M.M. Häggblom, S.R. Oppenheimer and L.Y. Young. 1993. Reductive dechlorination of polychlorinated biphenyls in anaerobic sediments. Environ. Sci. Technol. 27: 530–538.10.1021/es00040a012 Search in Google Scholar

Altschul S.F., T.L. Madden, A.A. Schäffer, J. Zhang, Z. Zhang, W. Miller and D.J. Lipman. 1997. Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acid Res. 25: 3389–3402.10.1093/nar/25.17.3389 Search in Google Scholar

Bouchard B., R. Beaudet, R. Villemur, G. McSween, F. Lepine and Search in Google Scholar

J.G. Bisaillon. 1996. Isolation and characterization of Desulfitobac- terium frappieri sp. nov., an anaerobic bacterium which reductively dechlorinates pentachlorophenol to 3-chlorophenol. Int. J. Syst. Bacteriol. 46: 1010–1015. Search in Google Scholar

Breitenstein A., A. Saano, M. Salkinoja-Salonen, J.R. Andreesen and U. Lechner. 2001. Analysis of a 2,4,6-trichlorophenol-deha- logenating enrichment culture and isolation of the dehalogenating member Desulfitobacterium frappieri strain TCP-A. Arch. Microbiol. 175: 133–142. Search in Google Scholar

Brisson V.L., K.A. West, P.K.H. Lee, S.G. Tringe, E.L. Brodie and L. Alvarez-Cohen. 2012. Metagenomic analysis of a stable trichloroethene-degrading microbial community. ISME J. 6: 1702–1714.10.1038/ismej.2012.15 Search in Google Scholar

Christiansen N. and B.K. Ahring. 1996. Desulfitobacterium hafni- ense sp. nov., an anaerobic, reductively dechlorinating bacterium. Int. J. Syst. Bacteriol. 46: 442–448. Search in Google Scholar

Christiansen N., B.K. Ahring, G. Wohlfarth and G. Diekert. 1998. Purification and characterization of the 3-chloro-4-hydroxy-phenyl- acetate reductive dehalogenase of Desulfitobacterium hafniense. FEBS Lett. 436: 159–162.10.1016/S0014-5793(98)01114-4 Search in Google Scholar

Chrzanowski L., L.Y. Wick, R. Meulenkamp, M. Kaestner and H.J. Heipieper. 2009. Rhamnolipid biosurfactants decrease the toxicity of chlorinated phenols to Pseudomonas putida DOT-T1E. Lett. App. Microbiol. 48: 756–762.10.1111/j.1472-765X.2009.02611.x19344356 Search in Google Scholar

Chrzanowski L., M. Owsianiak, A. Szulc, R. Marecik, A.P. Cyplik, A.K.O Schmidt, J. Staniewski, P. Lisiecki, F. Ciesielczyk, T. Jesio- nowski and others. 2011. Interactions between rhamnolipid biosurfactants and toxic chlorinated phenols enhance biodegradation of a model hydrocarbon-rich effluent. International Biodeterioration and Biodegradation 65:605–611.10.1016/j.ibiod.2010.10.015 Search in Google Scholar

Cole J.R., A.L. Cascarelli, W.W. Mohn and J.M. Tiedje. 1994. Isolation and characterization of a novel bacterium growing via reductive dehalogenation of 2-chlorophenol. Appl. Environ. Microbiol. 60: 3536–3542.10.1128/aem.60.10.3536-3542.19942018517527200 Search in Google Scholar

Cupples A.M., R.A. Sanford and G.K. Sims. 2005. Dehalogenation of the herbicides bromoxynil (3,5-dibromo-4-hydroxybenzonitrile)and ioxynil (3,5-diiodino-4-hydroxybenzonitrile) by Desulfitobacte- rium chlororespirans. Appl. Environ. Microbiol. 71: 3741–3746. Search in Google Scholar

Deweerd K.A., L. Mandelco, R.S. Tanner, C.R. Woese and J.M. Suflita. 1990. Desulfomonile tiedjei gen. nov. and sp. nov., a novel anaerobic, dehalogenating, sulfate-reducing bacterium. Arch. Microbiol. 154: 23–30. Search in Google Scholar

Drzyzga O., J. Gerritse, J.A. Dijk, H. Elissen and J.C. Gottschal. 2001. Coexistence of a sulphate-reducing Desulfovibrio species and the dehalorespiring Desulfitobacterium frappieri TCE1 in defined chemostat cultures grown with various combinations of sulfate and tetrachloroethene. Environ. Microbiol. 3(2): 92–99.10.1046/j.1462-2920.2001.00157.x11321548 Search in Google Scholar

Duhamel M. and E.A. Edwards. 2007. Growth and yields of dechlorinators, acetogens, and methanogens during reductive dechlorination of chlorinated ethenes and dihaloelimination of 1,2-dichloro- ethane. Environ. Sci. Technol. 41: 2303–2310.10.1021/es062010r17438779 Search in Google Scholar

El Fantroussi S., H. Naveau and S.N. Agathos. 1998. Anaerobic dechlorinating bacteria. Biotechnol. Prog. 14: 167–188.10.1021/bp980011k9548767 Search in Google Scholar

Fagervold S.K., J.E.M. Watts, H.D. May and K.R. Sowers. 2005. Sequential reductive dechlorination of meta-chlorinated polychlorinated biphenyl congeners in sediment microcosms by two different Chloroflexi phylotypes. Appl. Environ. Microbiol. 71(12): 8085–8090.Search in Google Scholar

Fennell D.E., V. Nijenhuis, S.F. Wilson, S.H. Zinder and M.M. Häggblom. 2004. Dehalococcoides ethenogenes strain 195 reductively dechlorinates diverse chlorinated aromatic pollutants. Environ. Sci. Technol. 38: 2075–2081.10.1021/es034989b Search in Google Scholar

Fung J.M., B.P. Weisenstein, E.E. Mack, J.E. Vidumsky, T.A. Ei and S.H. Zinder. 2009. Reductive dehalogenation of dichlorobenzenes and monochlorobenzene to benzene in microcosms. Environ. Sci. Technol. 43: 2302–2307.10.1021/es802131d Search in Google Scholar

Gauthier A., R. Beaudet, F. Le’pine, P. Juteau and R. Villemur. 2006. Occurrence and expression of crdA and cprA5 encoding chloroaromatic reductive dehalogenases in Desulfitobacterium strains. Can. J. Microbiol. 52(1): 47–55. Search in Google Scholar

Gelsomino A., C. Keijzer-Wolters, G. Cacco and J.D. van Elsas. 1999. Assessment of bacterial community structure in soil by polymerase chain reaction and denaturing gradient gel electrophoresis. J. Microbiol. Methods 38: 1–15.10.1016/S0167-7012(99)00054-8 Search in Google Scholar

Gerritse J., V. Renard, P.T.M. Gomes, P.A. Lawson, M.D. Collins and J.C. Gottschal. 1996. Desulfitobacterium sp. strain PCE1, an anaerobic bacterium that can grow by reductive dechlorination of tetrachloroethene or ortho-chlorinated phenols. Arch. Microbiol. 165(2): 132–40. Search in Google Scholar

Gerritse J., O. Drzyzga, G. Kloetstra, M. Keijmel, L.P. Wiersum, R. Hutson, M.D. Collins and J.C. Gottschal. 1999. Influence of different electron donors and acceptors on dehalorespiration of tetrachloroethene by Desulfitobacterium frappieri TCE1. Appl. Environ. Microbiol. 65(12): 5212–5221. Search in Google Scholar

Häggblom M.M. 1992. Microbial breakdown of halogenated aromatic pesticides and related compounds. FEMS Microbiol. Rev. 103: 29–71.10.1111/j.1574-6968.1992.tb05823.x1389314Search in Google Scholar

Häggblom M.M. and I.G. Bossert (eds). 2003. Dehalogenation, microbial processes and environmental applications. Kluwer Academic Publisher Group, Norwell, MA. Search in Google Scholar

Holliger C., G. Wohlfarth and G. Diekert. 1998. Reductive dechlorination in the energy metabolism of anaerobic bacteria. FEMS Microbiol. Rev. 22: 383–398.10.1111/j.1574-6976.1998.tb00377.x Search in Google Scholar

Holliger C., C. Regeard and G. Diekert. 2003. Dehalogenation by anaerobic bacteria, pp. 115–157. In: Häggblom M.M. and I.D. Bossert (eds). Dehalogenation, Microbial Processes and Environmental Applications. Kluwer Academic Publisher Group, Norwell, MA.10.1007/0-306-48011-5_5 Search in Google Scholar

Hug L.A. 2012. Ph.D. Thesis. A metagenome-based examination of dechlorinating enrichment cultures: Dehalococcoides and the role of the non-dechlorinating microorganisms, pp. 1–264. Cell and Systems Biology, University of Toronto, Canada. Search in Google Scholar

Hug L.A. and E.A. Edwards. 2013. Diversity of reductive dehaloge- nase genes from environmental samples and enrichment cultures identified with degenerate primer PCR screens. Front. Microbiol. 49(341): 1–16. Search in Google Scholar

Hug L.A., F. Maphosa, D. Leys, F.E. Löffler, H. Smidt, E.A. Edwards and L. Adrian. 2013. Overview of organohalide-respiring bacteria and a proposal for a classification system for reductive dehaloge- nases. Phil. Trans R. Soc. B. 368: 20120322.10.1098/rstb.2012.0322363846323479752 Search in Google Scholar

Itoh K., Y. Mihara, N. Tanimoto, T. Shimada and K. Suyama. 2010. Reductive dechlorination of chlorophenols in estuarine sediments of Lake Shinji and Lake Nakaumi. J. Environ. Sci. Health B. 45(5): 399–407. Search in Google Scholar

Karn S.K., S.K. Chakrabarti and M.S. Reddy. 2011. Degradation of pentachlorophenol by Kocuria sp. CL2 isolated from secondary sludge of pulp and paper mill. Biodegradation 22: 63–69.10.1007/s10532-010-9376-620532592 Search in Google Scholar

Kjellerup B.V., C. Naff, S.J. Edwards, U. Ghosh, J.E. Baker and Search in Google Scholar

K.R. Sowers. 2014. Effects of activated carbon on reductive dechlorination of PCBs by organohalide respiring bacteria indigenous to sediments. Water Res. 52: 1–10.10.1016/j.watres.2013.12.03024440760 Search in Google Scholar

Kumar S., K. Tamura and M. Nei. 2004. MEGA3: An integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. Brief Bioinform. 5: 150–163.10.1093/bib/5.2.15015260895 Search in Google Scholar

Kuokkaa S., A.L. Rantalainena, M. Romantschuka and M.M. Häggblom. 2014. Effect of temperature on the reductive dechlo- rinationof 1,2,3,4-tetrachlorodibenzofuran in anaerobicPCDD/F- contaminated sediments. J. Haz. Mat. 274: 72–78. Search in Google Scholar

Lake J.L., R.J. Pruell and F.A. Osterman. 1992. An examination of dechlorination processes and pathways in New Bedford Harbor sediments. Mar. Environ. Res. 33: 31–47.10.1016/0141-1136(92)90004-6 Search in Google Scholar

Leys D., L. Adrian and H. Smidt. 2013. Organohalide respiration: microbes breathing chlorinated molecules. Phil. Trans R. Soc. B. 368: 20120316.10.1098/rstb.2012.0316363845723479746 Search in Google Scholar

Li Z., Y. Inoue, D. Suzuki, L. Ye and A. Katayama. 2013. Long-term anaerobic mineralization of pentachlorophenol in a continuous-flow system using only lactate as an external nutrient. Environ. Sci. Tech- nol. 47: 1534–1541.10.1021/es303784f23252798 Search in Google Scholar

Löffler F.E., R.A. Sanford and J.M. Tiedje. 1996. Initial characterization of a reductive dehalogenase from Desulfitobacterium chloro- respirans Co23. Appl. Environ. Microbiol. 62: 3809–3813.10.1128/aem.62.10.3809-3813.1996138896316535425 Search in Google Scholar

Löffler F.E., J.R. Cole, K.M. Ritalahti and J.M. Tiedje. 2003. Diversity of dechlorinating bacteria. Dehalogenation, pp. 53–87. In: Häggblom M.M. and I.D. Bossert (eds). Microbial processes and environmental applications. Kluwer Academic Publisher Group, Norwell, MA.10.1007/0-306-48011-5_3 Search in Google Scholar

Luijten M., W. Roelofsen, A.A.M. Langenhoff, G. Schraa and A.J.M. Stams. 2004. Hydrogen threshold concentrations in pure cultures of halorespiring bacteria and at a site polluted with chlorinated ethenes. Environ. Microbiol. 6: 646–650.10.1111/j.1462-2920.2004.00608.x15142253 Search in Google Scholar

Madsen T. and D. Licht. 1992. Isolation and characterization of an anaerobic chlorophenol-transforming bacterium. Appl. Environ. Microbiol. 58:2874–2878.10.1128/aem.58.9.2874-2878.19921830211444400 Search in Google Scholar

Maphosa F., M.W.J. van Passel, W.M. de Vos and H. Smidt. 2012. Metagenome analysis reveals yet unexplored reductive dechlorinating potential of Dehalobacter sp. E1 growing in co-culture with Sedimentibacter sp. Environ. Microbiol. Rep. 4: 604–616.10.1111/j.1758-2229.2012.00376.x23760931 Search in Google Scholar

Masunaga S., S. Susarla, J.L. Gundersen and Y. Yonezawa. 1996. Pathways and rate of chlorophenol transformation in anaerobic estuarine sediment. Environ. Sci. Technol. 30: 1253–1260.10.1021/es950457m Search in Google Scholar

Maymo-Gatell X., Y.T. Chien, J.M. Gossett and S.H. Zinder. 1997. Isolation of a bacterium that reductively dechlorinates tetrachloroethene to ethene. Science 276: 1568–1571.10.1126/science.276.5318.15689171062 Search in Google Scholar

Mazur C.S. and W.J. Jones. 2001. Hydrogen concentrations in sulfate-reducing estuarine sediments during PCE dehalogenation. Environ. Sci. Technol. 35: 4783–4788.10.1021/es0110372 Search in Google Scholar

Mazur C.S., W.J. Jones and C.T. Stevens. 2003. H2 consumption during the microbial reductive dehalogenation of chlorinated phenols and tetrachloroethene. Biodegradation 14:(4) 285–295.10.1023/A:1024765706617 Search in Google Scholar

McAllister K.A., H. Lee and J.T. Trevors. 1996. Microbial degradation of pentachlorophenol. Biodegradation 7: 1–40.10.1007/BF00056556 Search in Google Scholar

Muyzer G., E. de Waal and A. Uitterlinden. 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 59: 695–700.10.1128/aem.59.3.695-700.1993 Search in Google Scholar

Rowe A.R., B.J. Lazar, R.M. Morris and R.E. Richardson. 2008. Characterization of the community structure of a dechlorinating mixed culture and comparisons of gene expression in planktonic and biofloc-associated Dehalococcoides and Methanospirillum species. Appl. Environ. Microbiol. 74: 6709–6719.10.1128/AEM.00445-08 Search in Google Scholar

Saitou N. and M. Nei. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406–425. Search in Google Scholar

Sanford R.A., J.R. Cole, F.E. Löffler and J.M. Tiedje. 1996. Characterization of Desulfitobacterium chlororespirans sp. nov., which grows by coupling the oxidation of lactate to the reductive dechlorination of 3-chloro-4-hydroxybenzoate. Appl. Environ. Microbiol. 62: 3800–3808. Search in Google Scholar

Sanford R.A., J.R. Cole and J.M. Tiedje. 2002. Characterization and description of Anaeromyxobacter dehalogenans gen. nov., sp. nov., an aryl-halorespiring facultative anaerobic myxobacterium. Appl. Environ. Microbiol. 68: 893–900. Search in Google Scholar

Sanger F., S. Nicklen and A.R. Coulson. 1977. DNA sequencing with chain-termination inhibitors. Proc. Natl. Acad. Sci. USA 74: 5463–5467.10.1073/pnas.74.12.5463 Search in Google Scholar

Smidt H., M. van Leest, J. van der Oost and W.M. de Vos. 2000. Transcriptional regulation of the cpr gene cluster in ortho-chlo- rophenol-respiring Desulfitobacterium dehalogenans. J. Bacteriol. 182(20): 5683–5691. Search in Google Scholar

Smidt H. and W.M. de Vos. 2004. Anaerobic microbial dehalogenation. Annu. Rev. Microbiol. 58: 43–73.10.1146/annurev.micro.58.030603.123600 Search in Google Scholar

Sun B., J.R. Cole, R.A. Sanford and J.M. Tiedje. 2000. Isolation and characterization of Desulfovibrio dechloracetivorans sp. nov., a marine dechlorinating bacterium growing by coupling the oxidation of acetate to the reductive dechlorination of 2 chlorophenol. Appl. Environ. Microbiol. 66(6): 2408–2413.10.1128/AEM.66.6.2408-2413.2000 Search in Google Scholar

Takeuchi R., Y. Suwa, T. Yamagishi and Y. Yonezawa. 2000. Anaerobic transformation of chlorophenols in methanogenic sludge unexposed to chlorophenols. Chemosphere 41:1457–1462.10.1016/S0045-6535(99)00521-4 Search in Google Scholar

Thibodeau J., A. Gauthier, M. Duguay, R. Villemur, F. Le’pine, P. Juteau and R. Beaudet. 2004. Purification, cloning, and sequencing of a 3,5-dichlorophenol reductive dehalogenase from Desulfito- bacterium frappieri PCP-1. Appl. Environ. Microbiol. 70: 4532–4537.Search in Google Scholar

Thomas S.H., R.D. Wagner, A.K. Arakaki, J. Skolnick, J.R. Kirby, Search in Google Scholar

L.J. Shimkets, R.A. Sanford and F.E. Löffler. 2008. The mosaic genome of Anaeromyxobacter dehalogenans strain 2CP-C suggests an aerobic common ancestor to the delta-proteobacteria. PLoS ONE 3(5): e2103.10.1371/journal.pone.0002103233006918461135 Search in Google Scholar

Thompson D., J. Gibson, F. Plewinak, F. Jeanmougin and G. Higgins. 1997. The Clastal X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nuc. Acid Res. 25: 4867–4887.10.1093/nar/25.24.48761471489396791 Search in Google Scholar

Utkin I., C. Woese and J. Wiegel. 1994. Isolation and characterization of Desulfitobacterium dehalogenans gen. nov., sp. nov., an anaerobic bacterium which reductively dechlorinates chlorophenolic compounds. Int. J. Syst. Bacteriol. 44: 612–619. Search in Google Scholar

van de Pas B.A., H. Smidt, W.R. Hagen, J. van der Oost, G. Schraa, A.J. Stams and W.M. de Vos. 1999. Purification and molecular characterization of ortho-chlorophenol reductive dehalogenase, a key enzyme of halorespiration in Desulfitobacterium dehalogenans. J. Biol. Chem. 274: 20287–20292. Search in Google Scholar

Vandermeeren P., S. Herrmann, D. Cichocka, P. Busschaert, B. Lievens, H.H. Richnow and D. Springael. 2014. Diversity of dechlorination pathways and organohalide respiring bacteria in chlorobenzene dechlorinating enrichment cultures originating from river sludge. Biodegradation. 25(5): 757–776.10.1007/s10532-014-9697-y25037978 Search in Google Scholar

von Wintzingerode F., C. Schlötelburg, R. Hauck, W. Hegemann and U.B. Göbel. 2001. Development of primers for amplifying genes encoding CprA- and PceA-like reductive dehalogenases in anaerobic microbial consortia, dechlorinating trichlorobenzene and 1,2-dichloropropane. FEMS Microbiol. Ecol. 35: 189–196.10.1111/j.1574-6941.2001.tb00803.x Search in Google Scholar

Villemur R., M. Saucier, A. Gauthier and R. Beaudet. 2002. Occurrence of several genes encoding putative reductive dehaloge- nases in Desulfitobacterium hafniense/frappieri and Dehalococcoides ethenogenes. Can. J. Microbiol. 48(8): 697–706. Search in Google Scholar

Villemur R., M. Lanthier, R. Beaudet and F. L’epine. 2006. The Desulfitobacterium genus FEMS Microbiol. Rev. 30:706–733. Search in Google Scholar

Villemur R. 2013. The pentachlorophenol-dehalogenating Desulfito- bacterium hafniense strain PCP-1. Philos. Trans R. Soc. B. 368(1616): 20120319. Search in Google Scholar

Wagner D.D., L.A. Hug, J.K. Hatt, M.A. Spitzmiller, E. Padilla- Crespo, K.M. Ritalahti, E.A. Edward, K.T. Konstantinidis and F.E. Löffler. 2012. Genomic determinants of organohalide-respira- tion in Geobacter lovleyi, an unusual member of the Geobacteraceae. BMC Genomics 13(200): 1–17. Search in Google Scholar

Wang S., W. Zhang, K.L. Yang and J. He. 2014. Isolation and characterization of a novel Dehalobacter species strain TCP1 that reductively dechlorinates 2,4,6-trichlorophenol. Biodegradation. 25(2): 313–323.10.1007/s10532-013-9662-123995979 Search in Google Scholar

WHO. 1998. Guidelines for Drinking-Water Quality, 2nd eds. Addendum to Vol. 1, Recommendations, pp. 21–22. World Health Organization, Geneva. Search in Google Scholar

WHO. 1989. Chlorophenols other than pentachlorophenol. World Health Organization, Geneva. Search in Google Scholar

Wiegel J., X.M. Zhang and Q.Z. Wu. 1999. Anaerobic dehalogenation of hydroxylated polychlorinated biphenyls by Desulfitobacte- rium dehalogenans. Appl. Environ. Microbiol. 65: 2217–2221.10.1128/AEM.65.5.2217-2221.19999131910224022 Search in Google Scholar

Wu Q.Z., K.R. Sowers and H.D. May. 1998. Microbial reductive dechlorination of Aroclor 1260 in anaerobic slurries of estuarine sediments. Appl. Environ. Microbiol. 64: 1052–1058.10.1128/AEM.64.3.1052-1058.199810636616349512 Search in Google Scholar

Zanaroli G., A. Balloi, A. Negroni, D. Daffonchio, L.Y. Young and F. Fava. 2010. Characterization of the microbial community from the marine sediment of the Venice lagoon capable of reductive dechlorination of coplanar polychlorinated biphenyls (PCBs). J. Haz. Mat. 178: 417–426.10.1016/j.jhazmat.2010.01.09720153926 Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo