1. bookVolume 65 (2016): Issue 1 (March 2016)
Journal Details
First Published
04 Mar 1952
Publication timeframe
4 times per year
access type Open Access

Isolation and Characterization of α-Endosulfan Degrading Bacteria from the Microflora of Cockroaches

Published Online: 15 Mar 2016
Volume & Issue: Volume 65 (2016) - Issue 1 (March 2016)
Page range: 63 - 68
Received: 09 Sep 2014
Accepted: 08 Oct 2015
Journal Details
First Published
04 Mar 1952
Publication timeframe
4 times per year

Extensive applications of organochlorine pesticides like endosulfan have led to the contamination of soil and environments. Five different bacteria were isolated from cockroaches living in pesticide contaminated environments. According to morphological, physiological, biochemical properties, and total cellular fatty acid profile by Fatty Acid Methyl Esters (FAMEs), the isolates were identified as Pseudomonas aeruginosa G1, Stenotrophomonas maltophilia G2, Bacillus atrophaeus G3, Citrobacter amolonaticus G4 and Acinetobacter lwoffii G5. This is the first study on the bacterial flora of Blatta orientalis evaluated for the biodegradation of α-endosulfan. After 10 days of incubation, the biodegradation yields obtained from P. aeruginosa G1, S. maltophilia G2, B. atrophaeus G3, C. amolonaticus G4 and A. lwoffii G5 were 88.5%, 85.5%, 64.4%, 56.7% and 80.2%, respectively. As a result, these bacterial strains may be utilized for biodegradation of endosulfan polluted soil and environments.


Bajaj A., A. Pathak, M.R. Mudiam, S. Mayilraj and N. Manickam. 2010. Isolation and characterization of a Pseudomonas sp. strain IITR01 capable of degrading α-endosulfan and endosulfan sulfate. J. Appl. Microbiol. 109: 2135–2143.10.1111/j.1365-2672.2010.04845.x Search in Google Scholar

Basile F., M.B. Beverly and K.J. Voorhees. 1998. Pathogenic bacteria: their detection and differentiation by rapid lipid profiling with pyrolysis mass spectrometry. Trends Analyt. Chem. 17: 95–109.10.1016/S0165-9936(97)00103-9 Search in Google Scholar

Benson H.J. 2001. Microbiological Applications Laboratory Manual. Laboratory Manual for General Microbiology. Eighth Edition. The McGraw-Hill Companies, New York. Search in Google Scholar

Bhattacharjee K., S. Banerjee, L. Bawitlung, D. Krishnappa and S.R. Joshi. 2014. A study on parameters optimization for degradation of endosulfan by bacterial consortia isolated from contaminated soil. Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 84: 657–6676.10.1007/s40011-013-0223-5 Search in Google Scholar

Castillo J.M., J. Casas and E. Romero. 2011. Isolation of an endosulfan-degrading bacterium from a coffee farm soil: Persistence and inhibitory effect on its biological functions. Sci. Total Environ. 412: 20–27.10.1016/j.scitotenv.2011.09.062 Search in Google Scholar

David F., B. Tienpont and P. Sandra. 2008. Chemotaxonomy of bacteria by comprehensive GC and GC-MS in electron impact and chemical ionisation mode. J. Sep. Sci. 31: 3395–3403.10.1002/jssc.200800215 Search in Google Scholar

De Boever P., P. Ilyin, V. Forget-Hanus, G. Van der Auwera, J. Mahillon and M. Mergeay. 2007. Conjugation-mediated plasmid exchange between bacteria grown under space flight conditions. Microgravity Sci. Technol. 19: 5–6.10.1007/BF02919469 Search in Google Scholar

De Gelder L., J.J. Williams, J.M. Ponciano, M. Sota and E.M. Top. 2008. Adaptive plasmid evolution results in host-range expansion of a broad-host-range plasmid. Genetics 178: 2179–2190.10.1534/genetics.107.084475 Search in Google Scholar

Dillon R.J. and V.M. Dillon. 2004. The gut bacteria of insects: non-pathogenic interactions. Annu. Rev. Entomol. 49: 71–92.10.1146/annurev.ento.49.061802.123416 Search in Google Scholar

Dorough, H.W., K. Huhtanen, T.C. Marshall and H.E. Bryant. 1978. Fate of endosulfan in rats and toxicological considerations of apolar metabolites. Pestic Biochem. Physiol. 8: 241–252.10.1016/0048-3575(78)90022-6 Search in Google Scholar

Fan S. 2007. Draft Endosulfan Risk Characterization Document: Volume III – Environmental Fate. Department of Pesticide Regulation, Environmental Monitoring Branch, California Environmental Protection Agency: Sacramento, CA, USA. Search in Google Scholar

Fang J., M.J. Barcelona and P.J.J. Alvarez. 2000. A direct comparison between fatty acid analysis and intact phospholipid profiling for microbial identification. Org. Geochem. 31: 881–887.10.1016/S0146-6380(00)00053-X Search in Google Scholar

Fotedar R., U.B. Shriniwas and A. Verma. 1991. Cockroaches (Blattella germanica) as carriers of microorganisms of medical importance in hospitals. Epidemiol. Infect. 107: 181–187.10.1017/S0950268800048809 Search in Google Scholar

Giacomini M., C. Ruggiero and L. Calegari. 2000. Artificial neural network based identification of environmental bacteria by gas-chromatographic and electrophoretic data. J. Microbiol. Methods 43: 45–54.10.1016/S0167-7012(00)00203-7 Search in Google Scholar

Gill S.R., M. Pop, R.T. DeBoy, P.B. Eckburg, P.J. Turnbaugh, B.S. Samuel, J.I. Gordon, D.A. Relman, C.M. Fraser-Liggett and K.E. Nelson. 2006. Metagenomic analysis of the human distal gut microbiome. Science 312: 1355–1359.10.1126/science.1124234302789616741115 Search in Google Scholar

Goebel, H., Gorbach, S., Knauf, W., Rimpau, R.H. and H. Hutten-bach. 1982. Properties, effects, residues and analytics of the insecticide endosulfan. Residue Rev. 83: 40–41. Search in Google Scholar

Goswami S. and D.K. Singh. 2009. Biodegradation of a and b endosulfan in broth medium and soil microcosm by bacterial strain Bordetella sp. B9. Biodegradation 20: 199–207.10.1007/s10532-008-9213-318704698 Search in Google Scholar

Gur O., M. Ozdal and O.F. Algur. 2014. Biodegradation of the synthetic pyrethroid insecticide α-cypermethrin by Stenotrophomonas maltophilia OG2. Turk. J. Biol. 38: 684–689.10.3906/biy-1402-10 Search in Google Scholar

Holt J.G., N.R. Krieg, P.H.A. Sneath, J.T. Staley and S.T. Williams. 1994. Bergey’s Manual of Determinative Bacteriology, 9th ed. Lippincott Williams and Wilkins, Baltimore. Search in Google Scholar

Hussain S., M. Arshad, M. Saleem and A. Khalid. 2007. Biodegradation of α- and β-endosulfan by soil bacteria. Biodegradation 18: 731–740.10.1007/s10532-007-9102-117252313 Search in Google Scholar

Hussain S., M. Arshad, B. Shaharoona, M. Saleem and A. Khalid. 2009. Concentration dependent growth/non-growth linked kinetics of endosulfan biodegradation by Pseudomonas aeruginosa. World J. Microbiol. Biotechnol. 25: 853–858.10.1007/s11274-009-9958-9 Search in Google Scholar

Ikemoto S., H. Kuraishi, K. Komagata, R. Azuma, T. Suto and H. Muroka. 1978. Cellular fatty acid composition in Pseudomonas species. J. Gen. Appl. Microbiol. 24: 199–213.10.2323/jgam.24.199 Search in Google Scholar

Kaneda T. 1977. Fatty Acids of the Genus Bacillus: an Example of Branched-Chain Preference. Bacteriol Rev. 41: 391–418.10.1128/br.41.2.391-418.1977414006329832 Search in Google Scholar

Kataoka R and K. Takagi. 2013. Biodegradability and biodegradation pathways of endosulfan and endosulfan sulphate. Appl. Microbiol. Biotechnol. 97: 3285–3292.10.1007/s00253-013-4774-423463248 Search in Google Scholar

Kikuchi Y., M. Hayatsu, T. Hosokawa, A. Nagayama, K. Tago and T. Fukatsu. 2012. Symbiont-mediated insecticide resistance. Proc. Natl. Acad. Sci. 109: 8618–8622.10.1073/pnas.1200231109 Search in Google Scholar

Kong L., S. Zhu, L. Zhu, H. Xie, K. Su, T. Yan, J. Wang, J. Wang, F. Wang and F. Sun. 2013. Biodegradation of organochlorine pesticide endosulfan by bacterial strain Alcaligenes faecalis JBW4. J. Environ. Sci. 25: 2257–2264.10.1016/S1001-0742(12)60288-5 Search in Google Scholar

Kumar K., S.S. Devi, K. Krishnamurthi, G.S. Kanade and T. Chakrabarti. 2007. Enrichment and isolation of endosulfan degrading and detoxifying bacteria. Chemosphere 68: 317–322.10.1016/j.chemosphere.2006.12.07617289112 Search in Google Scholar

Kumar A., N. Bhoot, I. Soni and P.J. John. 2014. Isolation and characterization of a Bacillus subtilis strain that degrades endosulfan and endosulfan sulfate. 3 Biotech. 4: 467–475.10.1007/s13205-013-0176-7416289428324378 Search in Google Scholar

Lu Y., K. Morimoto, T. Takeshita, T. Takeuchi and T. Saito. 2000. Genotoxic effects of α-endosulfan and β-endosulfan on human HepG2 cells. Environ. Health Perspect. 108: 559–561.10.1289/ehp.00108559163814710856031 Search in Google Scholar

Moss C.W., P.L. Wallace, D.G. Hollis and R.E. Weaver. 1988. Cultural and chemical characterization of CDC groups EO-2, M-5, and M-6, Moraxella (Moraxella) species, Oligella urethralis, Acinetobacter species, and Psychrobacter immobilis. J. Clin. Microbiol. 26: 484–492.10.1128/jcm.26.3.484-492.19882663183356788 Search in Google Scholar

Okay S., M. Ozdal and E.B. Kurbanoğlu. 2013. Characterization, antifungal activity and cell immobilization of a chitinase from Serratia marcescens MO-1. Turk. J. Biol. 37: 639–644. Search in Google Scholar

Ozdal M., U. Incekara, A. Polat, O. Gur, E.B. Kurbanoğlu and G.E. Tasar. 2012. Isolation of filamentous fungi associated with two common edible aquatic insects, Hydrophilus piceus and Dytiscus marginalis. J. Microbiol. Biotechnol. Food Sci. 2: 95–105. Search in Google Scholar

Pai H., W.C. Chen and C.F. Peng. 2005. Isolation of bacteria with antibiotic resistance from household cockroaches (Periplaneta ameri cana and Blattella germanica). Acta Trop. 93: 259–265.10.1016/j.actatropica.2004.11.00615716054 Search in Google Scholar

Reeson A.F., T. Jankovic, M.L. Kasper, S. Rogers and A.D. Austin. 2003. Application of 16S rDNA-DGGE to examine the microbial ecology associated with a social wasp Vespula germanica. Insect Mol. Biol. 12: 85–91.10.1046/j.1365-2583.2003.00390.x12542639 Search in Google Scholar

Siddique T., B.C. Okeke, M. Arshad and W.T.J. Frankenberger. 2003. Enrichment and isolation of endosulfan degrading microorganisms. J. Environ. Qual. 32: 47–54.10.2134/jeq2003.470012549541 Search in Google Scholar

Singh N.S. and D.K. Singh. 2011. Biodegradation of endosulfan and endosulfan sulfate by Achromobacter xylosoxidans strain C8B in broth medium. Biodegradation 22: 845–857.10.1007/s10532-010-9442-021161332 Search in Google Scholar

Sutherland T.D., I. Horne, M.J. Lacey, R.L. Harcourt, R.J. Russell and J.G. Oakeshott. 2000. Enrichment of an endosulfan-degrading mixed bacterial culture. Appl. Environ. Microbiol. 66: 2822–2828.10.1128/AEM.66.7.2822-2828.2000 Search in Google Scholar

Thangadurai P. and S. Suresh. 2014. Biodegradation of endosulfan by soil bacterial cultures. Int. Biodeterior. Biodegradation 94: 38–47.10.1016/j.ibiod.2014.06.017 Search in Google Scholar

Vancanneyt M., S. Witt, W.R. Abraham, K. Kersters and H.L. Fredrickson. 1996. Fatty acid content in wholecell hycrolysates and phospholipid fractions of pseudomonads: A taxonomic evaluation. Syst. Appl. Microbiol. 19: 528–540.10.1016/S0723-2020(96)80025-7 Search in Google Scholar

Verma A., D. Ali, M. Farooq, A.B. Pant, R.S. Ray and R.K. Hans. 2011. Expression and inducibility of endosulfan metabolizing gene in Rhodococcus strain isolated from earthworm gut microflora for its application in bioremediation. Bioresour. Technol. 102: 2979–2984.10.1016/j.biortech.2010.10.00521035330 Search in Google Scholar

Werren J.H. 2012. Symbionts provide pesticide detoxification. Proc. Natl. Acad. Sci. 109: 8364–8365.10.1073/pnas.1206194109336516322615369 Search in Google Scholar

Whittaker P., C.E. Keys, E.W. Brown and F.S. Fry. 2007. Differentiation of Enterobacter sakazakii from closely related Enterobacter and Citrobacter species using fatty acid profiles. J. Agric. Food Chem. 55: 4617–4623.10.1021/jf070193a17472390 Search in Google Scholar

Yu F.B., W.A. Shinawar, J.Y. Sun and L.P. Luo. 2012. Isolation and characterization of an endosulfan degrading strain, Stenotro-phomonas sp. LD-6, and its potential in soil bioremediation. Pol. J. Microbiol. 61: 257–262. Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo