Open Access

Dysregulation of protein argininemethyltransferase in the pathogenesis of cancerpy


Cite

Alam H., Gu B., Lee M.G.: Histone methylation modifiers in cellular signaling pathways. Cell. Mol. Life Sci., 2015; 72: 4577–4592 AlamH. GuB. LeeM.G. Histone methylation modifiers in cellular signaling pathways Cell. Mol. Life Sci. 2015 72 4577 4592 10.1007/s00018-015-2023-y Search in Google Scholar

Amano Y., Matsubara D., Yoshimoto T., Tamura T., Nishino H., Mori Y., Niki T.: Expression of protein arginine methyltransferase-5 in oral squamous cell carcinoma and its significance in epithelial-to-mesenchymal transition. Pathol. Int., 2018; 68: 359–366 AmanoY. MatsubaraD. YoshimotoT. TamuraT. NishinoH. MoriY. NikiT. Expression of protein arginine methyltransferase-5 in oral squamous cell carcinoma and its significance in epithelial-to-mesenchymal transition Pathol. Int. 2018 68 359 366 10.1111/pin.12666 Search in Google Scholar

Baldwin R.M., Bejide M., Trinkle-Mulcahy L., Côté J.: Identification of the PRMT1v1 and PRMT1v2 specific interactomes by quantitative mass spectrometry in breast cancer cells. Proteomics, 2015; 15: 2187–2197 BaldwinR.M. BejideM. Trinkle-MulcahyL. CôtéJ. Identification of the PRMT1v1 and PRMT1v2 specific interactomes by quantitative mass spectrometry in breast cancer cells Proteomics 2015 15 2187 2197 10.1002/pmic.201400209 Search in Google Scholar

Baldwin R.M., Haghandish N., Daneshmand M., Amin S., Paris G., Falls T.J., Bell J.C., Islam S., Côté J.: Protein arginine methyltransferase 7 promotes breast cancer cell invasion through the induction of MMP9 expression. Oncotarget, 2015; 6: 3013–3032 BaldwinR.M. HaghandishN. DaneshmandM. AminS. ParisG. FallsT.J. BellJ.C. IslamS. CôtéJ. Protein arginine methyltransferase 7 promotes breast cancer cell invasion through the induction of MMP9 expression Oncotarget 2015 6 3013 3032 10.18632/oncotarget.3072 Search in Google Scholar

Banasavadi-Siddegowda Y.K., Welker A.M., An M., Yang X., Zhou W., Shi G., Imitola J., Li C., Hsu S., Wang J., Phelps M., Zhang J., Beattie C.E., Baiocchi R., Kaur B.: PRMT5 as a druggable target for glioblastoma therapy. Neuro Oncol., 2018; 20: 753–763 Banasavadi-SiddegowdaY.K. WelkerA.M. AnM. YangX. ZhouW. ShiG. ImitolaJ. LiC. HsuS. WangJ. PhelpsM. ZhangJ. BeattieC.E. BaiocchiR. KaurB. PRMT5 as a druggable target for glioblastoma therapy Neuro Oncol. 2018 20 753 763 10.1093/neuonc/nox206 Search in Google Scholar

Bedford M.T.: The family of protein arginine methyltransferases. The Enzymes, 2006; 24: 31–50 BedfordM.T. The family of protein arginine methyltransferases The Enzymes 2006 24 31 50 10.1016/S1874-6047(06)80004-1 Search in Google Scholar

Behera A.K., Kumar M., Shanmugam M.K., Bhattacharya A., Rao V.J., Bhat A., Vasudevan M., Gopinath K.S., Mohiyuddin A., Chatteriee A., Sethi G., Kundu T.K.: Functional interplay between YY1 and CARM1 promotes oral carcinogenesis. Oncotarget, 2019; 10: 3709–3724 BeheraA.K. KumarM. ShanmugamM.K. BhattacharyaA. RaoV.J. BhatA. VasudevanM. GopinathK.S. MohiyuddinA. ChatterieeA. SethiG. KunduT.K. Functional interplay between YY1 and CARM1 promotes oral carcinogenesis Oncotarget 2019 10 3709 3724 10.18632/oncotarget.26984655720531217904 Search in Google Scholar

Brehmer D., Wu T., Mannens G., Beke L., Vinken P., Gaffney D., Sun W., Pande V., Thuring J.W., Millar H., Poggesi I., Somers I., Boeckx A., Parade M., van Heerde E. i wsp.: Abstract DDT02-04: A novel PRMT5 inhibitor with potent in vitro and in vivo activity in preclinical lung cancer models. Cancer Res., 2017; 77: DDT02–04 BrehmerD. WuT. MannensG. BekeL. VinkenP. GaffneyD. SunW. PandeV. ThuringJ.W. MillarH. PoggesiI. SomersI. BoeckxA. ParadeM. van HeerdeE. Abstract DDT02-04: A novel PRMT5 inhibitor with potent in vitro and in vivo activity in preclinical lung cancer models Cancer Res. 2017 77 DDT02 04 10.1158/1538-7445.AM2017-DDT02-04 Search in Google Scholar

Carlson S.M., Gozani O.: Emerging technologies to map the protein methylome. J. Mol. Biol. 2014; 426: 3350–3362 CarlsonS.M. GozaniO. Emerging technologies to map the protein methylome J. Mol. Biol. 2014 426 3350 3362 10.1016/j.jmb.2014.04.024417730124805349 Search in Google Scholar

Carr S.M., Roworth A.P., Chan C., La Thangue N.B.: Post-translational control of transcription factors: Methylation ranks highly. FEBS J., 2015; 282: 4450–4465 CarrS.M. RoworthA.P. ChanC. La ThangueN.B. Post-translational control of transcription factors: Methylation ranks highly FEBS J. 2015 282 4450 4465 10.1111/febs.1352426402372 Search in Google Scholar

Castellano S., Milite C., Ragno R., Simeoni S., Mai A., Limongeli V., Novellino E., Bauer I., Brosh G., Spannhoff A., Cheng D., Bedford M.T., Sbardella G.: Design, synthesis and biological evaluation of carboxy analogues of argininę methyltransferase inhibitor 1 (AMI-1). ChemMedChem., 2010; 5: 398–414 CastellanoS. MiliteC. RagnoR. SimeoniS. MaiA. LimongeliV. NovellinoE. BauerI. BroshG. SpannhoffA. ChengD. BedfordM.T. SbardellaG. Design, synthesis and biological evaluation of carboxy analogues of argininę methyltransferase inhibitor 1 (AMI-1) ChemMedChem. 2010 5 398 414 10.1002/cmdc.20090045920091730 Search in Google Scholar

Cheng D., Yadav N., King R.W., Swanson M.S., Weinstein E.J., Bedford M.T.: Small molecule regulators of protein arginine methyltransferases. J. Biol. Chem., 2004; 279: 23892–23899 ChengD. YadavN. KingR.W. SwansonM.S. WeinsteinE.J. BedfordM.T. Small molecule regulators of protein arginine methyltransferases J. Biol. Chem. 2004 279 23892 23899 10.1074/jbc.M40185320015056663 Search in Google Scholar

Eram M.S., Shen Y., Szewczyk M., Wu H., Senisterra G., Li F., Butler K.V., Kaniskan H.Ü., Speed B.A., Dela Seña C., Dong A., Zeng H., Schapira M., Brown P.J., Arrowsmith C.H. i wsp.: A potent, selective, and cell-active inhibitor of human type I protein arginine methyltransferases. ACS Chem. Biol., 2016; 11: 772–781 EramM.S. ShenY. SzewczykM. WuH. SenisterraG. LiF. ButlerK.V. KaniskanH.Ü. SpeedB.A. Dela SeñaC. DongA. ZengH. SchapiraM. BrownP.J. ArrowsmithC.H. A potent, selective, and cell-active inhibitor of human type I protein arginine methyltransferases ACS Chem. Biol. 2016 11 772 781 10.1021/acschembio.5b00839479891326598975 Search in Google Scholar

Feng Y., Xie N., Wu J., Yang C., Zheng Y.G.: Inhibitory study of protein arginine methyltransferase 1 using a fluorescent approach. Biochem. Biophys. Res. Commun., 2009; 379: 567–572 FengY. XieN. WuJ. YangC. ZhengY.G. Inhibitory study of protein arginine methyltransferase 1 using a fluorescent approach Biochem. Biophys. Res. Commun. 2009 379 567 572 10.1016/j.bbrc.2008.12.11919121292 Search in Google Scholar

Fulton M.D., Brown T., Zheng Y.G.: Mechanisms and inhibitors of histone arginine methylation. Chem. Rec., 2018; 18: 1792–1807 FultonM.D. BrownT. ZhengY.G. Mechanisms and inhibitors of histone arginine methylation Chem. Rec. 2018 18 1792 1807 10.1002/tcr.201800082634810230230223 Search in Google Scholar

Geng P., Zhang Y., Liu X., Zhang N., Liu Y., Liu X., Lin C., Yan X., Li Z., Wang G., Li Y., Tan J., Liu D.X., Huang B., Lu J.: Automethylation of protein arginine methyltransferase 7 and its impact on breast cancer progression. FASEB J., 2017; 31: 2287–2300 GengP. ZhangY. LiuX. ZhangN. LiuY. LiuX. LinC. YanX. LiZ. WangG. LiY. TanJ. LiuD.X. HuangB. LuJ. Automethylation of protein arginine methyltransferase 7 and its impact on breast cancer progression FASEB J. 2017 31 2287 2300 10.1096/fj.201601196R28188177 Search in Google Scholar

Hadjikyriacou A., Yang Y., Espejo A., Bedford M.T., Clarke S.G.: Unique features of human protein arginine methyltransferase 9 (PRMT9) and its substrate RNA splicing factor SF3B2. J. Biol. Chem., 2015; 290: 16723–16743 HadjikyriacouA. YangY. EspejoA. BedfordM.T. ClarkeS.G. Unique features of human protein arginine methyltransferase 9 (PRMT9) and its substrate RNA splicing factor SF3B2 J. Biol. Chem. 2015 290 16723 16743 10.1074/jbc.M115.659433450542225979344 Search in Google Scholar

Haghandish N., Baldwin R.M., Morettin A., Dawit H.T., Adhikary H., Masson J.Y., Mazroui R., Trinkle-Mulcahy L., Côté J.: PRMT7 methylates eukaryotic translation initiation factor 2α and regulates its role in stress granule formation. Mol. Biol. Cell, 2019; 30: 778–793 HaghandishN. BaldwinR.M. MorettinA. DawitH.T. AdhikaryH. MassonJ.Y. MazrouiR. Trinkle-MulcahyL. CôtéJ. PRMT7 methylates eukaryotic translation initiation factor 2α and regulates its role in stress granule formation Mol. Biol. Cell 2019 30 778 793 10.1091/mbc.E18-05-0330658977630699057 Search in Google Scholar

Han H.S., Choi D., Choi S., Koo S.H.: Roles of protein arginine methyltransferases in the control of glucose metabolism. Endocrinol. Metab., 2014; 29: 435–440 HanH.S. ChoiD. ChoiS. KooS.H. Roles of protein arginine methyltransferases in the control of glucose metabolism Endocrinol. Metab. 2014 29 435 440 10.3803/EnM.2014.29.4.435428503425559572 Search in Google Scholar

Hernandez S., Dominko T.: Novel protein arginine methyltransferase 8 isoform is essential for cell proliferation. J. Cell Biochem., 2016; 117: 2056–2066 HernandezS. DominkoT. Novel protein arginine methyltransferase 8 isoform is essential for cell proliferation J. Cell Biochem. 2016 117 2056 2066 10.1002/jcb.2550826851891 Search in Google Scholar

Hernandez S.J., Dolivo D.M., Dominko T.: PRMT8 demonstrates variant-specific expression in cancer cells and correlates with patient survival in breast, ovarian and gastric cancer. Oncol. Lett., 2017; 13: 1938–1989 HernandezS.J. DolivoD.M. DominkoT. PRMT8 demonstrates variant-specific expression in cancer cells and correlates with patient survival in breast, ovarian and gastric cancer Oncol. Lett. 2017 13 1938 1989 10.3892/ol.2017.5671540353928454353 Search in Google Scholar

Hsu M.C., Pan M.R., Chu P.Y., Tsai Y.L., Tsai C.H., Shan Y.S., Chen L.T., Hung W.C.: Protein arginine methyltransferase 3 enhances chemoresistance in pancreatic cancer by methylating hnRNPA1 to increase ABCG2 expression. Cancers, 2018; 11: 8 HsuM.C. PanM.R. ChuP.Y. TsaiY.L. TsaiC.H. ShanY.S. ChenL.T. HungW.C. Protein arginine methyltransferase 3 enhances chemoresistance in pancreatic cancer by methylating hnRNPA1 to increase ABCG2 expression Cancers 2018 11 8 10.3390/cancers11010008635658230577570 Search in Google Scholar

Hu G., Wang X., Han Y., Wang P.: Protein arginine methyltransferase 5 promotes bladder cancer growth through inhibiting NF-kB dependent apoptosis. EXCLI J., 2018; 17: 1157–1166 HuG. WangX. HanY. WangP. Protein arginine methyltransferase 5 promotes bladder cancer growth through inhibiting NF-kB dependent apoptosis EXCLI J. 2018 17 1157 1166 Search in Google Scholar

Hu H., Qian K., Ho M.C., Zheng Y.G.: Small molecule inhibitors of protein arginine methyltransferases. Expert Opin. Investig. Drugs, 2016; 25: 335–358 HuH. QianK. HoM.C. ZhengY.G. Small molecule inhibitors of protein arginine methyltransferases Expert Opin. Investig. Drugs 2016 25 335 358 10.1517/13543784.2016.1144747492906226789238 Search in Google Scholar

Iderzorig T., Kellen J., Osude C., Singh S., Woodman J.A., Garcia C., Puri N.: Comparison of EMT mediated tyrosine kinase inhibitor resistance in NSCLC. Biochem. Biophys. Res. Commun., 2018; 496: 770–777 IderzorigT. KellenJ. OsudeC. SinghS. WoodmanJ.A. GarciaC. PuriN. Comparison of EMT mediated tyrosine kinase inhibitor resistance in NSCLC Biochem. Biophys. Res. Commun. 2018 496 770 777 10.1016/j.bbrc.2018.01.069580120829337056 Search in Google Scholar

Jahan S., Davie J.R.: Protein arginine methyltransferases (PRMTs): Role in chromatin organization. Adv. Biol. Regul., 2015; 57: 173–184 JahanS. DavieJ.R. Protein arginine methyltransferases (PRMTs): Role in chromatin organization Adv. Biol. Regul. 2015 57 173 184 10.1016/j.jbior.2014.09.00325263650 Search in Google Scholar

Kaniskan H.Ü., Eram M.S., Liu J., Smil D., Martini M.L., Shen Y., Santhakumar V., Brown P.J., Arrowsmith C.H., Vedadi M., Jin J.: Design and synthesis of selective, small molecule inhibitors od coactivator-associated arginine methyltransferase 1 (CARM1). Med. Chem. Commun., 2016; 7: 1793–1796 KaniskanH.Ü. EramM.S. LiuJ. SmilD. MartiniM.L. ShenY. SanthakumarV. BrownP.J. ArrowsmithC.H. VedadiM. JinJ. Design and synthesis of selective, small molecule inhibitors od coactivator-associated arginine methyltransferase 1 (CARM1) Med. Chem. Commun. 2016 7 1793 1796 10.1039/C6MD00342G519877828042453 Search in Google Scholar

Karkhanis V., Hu Y.J., Baiocchi R.A., Imbalzano A.N., Sif S.: Versatility of PRMT5-induced methylation in growth control and development. Trends. Biochem. Sci., 2011; 36: 633–641 KarkhanisV. HuY.J. BaiocchiR.A. ImbalzanoA.N. SifS. Versatility of PRMT5-induced methylation in growth control and development Trends. Biochem. Sci. 2011 36 633 641 10.1016/j.tibs.2011.09.001322548421975038 Search in Google Scholar

Kleinschmidt M.A., de Graaf P., van Teeffeln H.A., Timmers H.T.: Cell cycle regulation by the PRMT6 arginine methyltransferase through repression of cyclin-dependent kinase inhibitors. PLoS One, 2012; 7: e41446 KleinschmidtM.A. de GraafP. van TeeffelnH.A. TimmersH.T. Cell cycle regulation by the PRMT6 arginine methyltransferase through repression of cyclin-dependent kinase inhibitors PLoS One 2012 7 e41446 10.1371/journal.pone.0041446342339722916108 Search in Google Scholar

Lattouf H., Poulard C., Le Romancer M.: PRMT5 prognostic value in cancer. Oncotarget, 2019; 10: 3151–3153 LattoufH. PoulardC. Le RomancerM. PRMT5 prognostic value in cancer Oncotarget 2019 10 3151 3153 10.18632/oncotarget.26883651671431139329 Search in Google Scholar

Leipold A., Heß J., Zaoui K.: Das Epigenoom. Zielstruktur für innovative Therapiekonzepte beim Kopf- und Halskarzinom. HNO, 2015; 63: 786–791 LeipoldA. HeßJ. ZaouiK. Das Epigenoom. Zielstruktur für innovative Therapiekonzepte beim Kopf- und Halskarzinom HNO 2015 63 786 791 10.1007/s00106-015-0075-926489412 Search in Google Scholar

Li M., An W., Xu L., Lin Y., Su L., Liu X.: The arginine methyl transferase PRMT5 and PRMT1 distinctly regulate the degradation of anti-apoptotic protein CFLARL in human lung cancer cells. J. Exp. Clin. Cancer Res., 2019; 38: 64 LiM. AnW. XuL. LinY. SuL. LiuX. The arginine methyl transferase PRMT5 and PRMT1 distinctly regulate the degradation of anti-apoptotic protein CFLARL in human lung cancer cells J. Exp. Clin. Cancer Res. 2019 38 64 10.1186/s13046-019-1064-8636874530736843 Search in Google Scholar

Li S., Cheng D., Zhu B., Yang Q.: The overexpression of CARM1 promotes human osteosarcoma cell proliferation through the pGSK3β/β-catenin/cyclinD1 signaling pathway. Int. J. Biol. Sci., 2017; 13: 976–984 LiS. ChengD. ZhuB. YangQ. The overexpression of CARM1 promotes human osteosarcoma cell proliferation through the pGSK3β/β-catenin/cyclinD1 signaling pathway Int. J. Biol. Sci. 2017 13 976 984 10.7150/ijbs.19191559990328924379 Search in Google Scholar

Li X., Wang C., Jiang H., Luo C.: A patent review of arginine methyltransferase inhibitors (2010–2018). Expert Opin. Ther. Pat., 2019; 29: 97–114 LiX. WangC. JiangH. LuoC. A patent review of arginine methyltransferase inhibitors (2010–2018) Expert Opin. Ther. Pat. 2019 29 97 114 10.1080/13543776.2019.156771130640571 Search in Google Scholar

Li Y., Zhu R., Wang W., Fu D., Hou J., Ji S., Chen B., Hu Z., Shao X., Yu X., Zhao Q., Zhang B., Du C., Bu Q., Hu C. i wsp.: Arginine methyltransferase 1 in the nucleus accumbens regulates behavioral effects of cocaine. J. Neurosci., 2015; 35: 12890–12902 LiY. ZhuR. WangW. FuD. HouJ. JiS. ChenB. HuZ. ShaoX. YuX. ZhaoQ. ZhangB. DuC. BuQ. HuC. Arginine methyltransferase 1 in the nucleus accumbens regulates behavioral effects of cocaine J. Neurosci. 2015 35 12890 12902 10.1523/JNEUROSCI.0246-15.2015679519926377474 Search in Google Scholar

Lin H., Wang B., Yu J., Wang J., Li Q., Cao B.: Protein arginine methyl transferase 8 gene enhances the colon cancer stem cell (CSC) function by upregulating the pluripotency transcription factor. J. Cancer, 2018; 9: 1394–1402 LinH. WangB. YuJ. WangJ. LiQ. CaoB. Protein arginine methyl transferase 8 gene enhances the colon cancer stem cell (CSC) function by upregulating the pluripotency transcription factor J. Cancer 2018 9 1394 1402 10.7150/jca.23835592908429721049 Search in Google Scholar

Litt M., Qiu Y., Huang S.: Histone arginine methylations: Their roles in chromatin dynamics and transcriptional regulation. Biosci. Rep., 2009; 29: 131–141 LittM. QiuY. HuangS. Histone arginine methylations: Their roles in chromatin dynamics and transcriptional regulation Biosci. Rep. 2009 29 131 141 10.1042/BSR20080176543380019220199 Search in Google Scholar

Mann M., Zou Y., Chen Y., Brann D., Vadlamudi R.: PELP1 oncogenic functions involve alternative splicing via PRMT6. Mol. Oncol., 2014; 8: 389–400 MannM. ZouY. ChenY. BrannD. VadlamudiR. PELP1 oncogenic functions involve alternative splicing via PRMT6 Mol. Oncol. 2014 8 389 400 10.1016/j.molonc.2013.12.012394368924447537 Search in Google Scholar

Michalak E.M., Visvader J.E.: Dysregulation of histone methyltransferases in breast cancer – opportunities for new targeted therapies? Mol. Oncol., 2016; 10: 1497–1515 MichalakE.M. VisvaderJ.E. Dysregulation of histone methyltransferases in breast cancer – opportunities for new targeted therapies? Mol. Oncol. 2016 10 1497 1515 10.1016/j.molonc.2016.09.003542313627717710 Search in Google Scholar

Nakai K., Xia W., Liao H.W., Saito M., Hung M.C., Yamaguchi H.: The role of PRMT1 in EGFR methylation and signaling in MDA-MB-468 triple-negative breast cancer cells. Breast Cancer, 2018; 25: 74–80 NakaiK. XiaW. LiaoH.W. SaitoM. HungM.C. YamaguchiH. The role of PRMT1 in EGFR methylation and signaling in MDA-MB-468 triple-negative breast cancer cells Breast Cancer 2018 25 74 80 10.1007/s12282-017-0790-z28643125 Search in Google Scholar

Nakakido M., Deng Z., Suzuki T., Dohmae N., Nakamura Y., Hamamoto R.: PRMT6 increases cytoplasmic localization of p21CDKN1A in cancer cells through arginine methylation and makes more resistant to cytotoxic agents. Oncotarget, 2015; 6: 30957–30967 NakakidoM. DengZ. SuzukiT. DohmaeN. NakamuraY. HamamotoR. PRMT6 increases cytoplasmic localization of p21CDKN1A in cancer cells through arginine methylation and makes more resistant to cytotoxic agents Oncotarget 2015 6 30957 30967 10.18632/oncotarget.5143474158026436589 Search in Google Scholar

Nakayama K., Szewczyk M.M., Dela Sena C., Wu H., Dong A., Zeng H., Li F., de Freitas R.F., Eram M.S., Schapira M., Baba Y., Kunitomo M., Cary D.R., Tawada M., Ohashi A. i wsp.: TP-064, a potent and selective small molecule inhibitor of PRMT4 for multiple myeloma. Oncotarget, 2018; 9: 18480–18493 NakayamaK. SzewczykM.M. Dela SenaC. WuH. DongA. ZengH. LiF. de FreitasR.F. EramM.S. SchapiraM. BabaY. KunitomoM. CaryD.R. TawadaM. OhashiA. TP-064, a potent and selective small molecule inhibitor of PRMT4 for multiple myeloma Oncotarget 2018 9 18480 18493 10.18632/oncotarget.24883591508629719619 Search in Google Scholar

Obianyo O., Causey C.P., Jones J.E., Thompson P.R.: Activity-based protein profiling of protein arginine methyltransferase 1. ACS Chem. Biol., 2011; 6: 1127–1135 ObianyoO. CauseyC.P. JonesJ.E. ThompsonP.R. Activity-based protein profiling of protein arginine methyltransferase 1 ACS Chem. Biol. 2011 6 1127 1135 10.1021/cb2001473319928621838253 Search in Google Scholar

Pawlicka K., Perrigue P., Barciszewski J.: Epigenetyczna kontrola procesów komórkowych. Nauka, 2018; 2: 115–128 PawlickaK. PerrigueP. BarciszewskiJ. Epigenetyczna kontrola procesów komórkowych Nauka 2018 2 115 128 Search in Google Scholar

Peng C., Wong C.C.: The story of protein arginine methylation: Characterization, regulation, and function. Expert Rev. Proteomics, 2017; 14: 157–170 PengC. WongC.C. The story of protein arginine methylation: Characterization, regulation, and function Expert Rev. Proteomics 2017 14 157 170 10.1080/14789450.2017.127557328043171 Search in Google Scholar

Poulard C., Corbo L., Le Romancer M.: Protein arginine methylation/demethylation and cancer. Oncotarget, 2016; 7: 67532–67550 PoulardC. CorboL. Le RomancerM. Protein arginine methylation/demethylation and cancer Oncotarget 2016 7 67532 67550 10.18632/oncotarget.11376534189527556302 Search in Google Scholar

Prabhu L., Chen L., Wei H., Demir Ö., Safa A., Zeng L., Amaro R.E., O’Neil B.H., Zhang Z.Y., Lu T.: Development of an AlphaLISA high throughput technique to screen for small molecule inhibitors targeting protein arginine methyltransferases. Mol. Biosyst., 2017; 13: 2509–2520 PrabhuL. ChenL. WeiH. DemirÖ. SafaA. ZengL. AmaroR.E. O’NeilB.H. ZhangZ.Y. LuT. Development of an AlphaLISA high throughput technique to screen for small molecule inhibitors targeting protein arginine methyltransferases Mol. Biosyst. 2017 13 2509 2520 10.1039/C7MB00391A575932329099132 Search in Google Scholar

Ran T., Li W., Peng B., Xie B., Lu T., Lu S., Liu W.: Virtual screening with a structure-based pharmacophore model to identify small-molecule inhibitors of CARM1. J. Chem. Inf. Model., 2019; 59: 522–534 RanT. LiW. PengB. XieB. LuT. LuS. LiuW. Virtual screening with a structure-based pharmacophore model to identify small-molecule inhibitors of CARM1 J. Chem. Inf. Model. 2019 59 522 534 10.1021/acs.jcim.8b0061030607947 Search in Google Scholar

Ryu J.W., Kim S.K., Son M.Y., Jeon S.J., Oh J.H., Lim J.H., Cho S., Jung C.R., Hamamoto R., Kim D.S., Cho H.S.: Novel prognostic marker PRMT1 regulates cell growth via downregulation of CDKN1A in HCC. Oncotarget, 2017; 8: 115444–115455 RyuJ.W. KimS.K. SonM.Y. JeonS.J. OhJ.H. LimJ.H. ChoS. JungC.R. HamamotoR. KimD.S. ChoH.S. Novel prognostic marker PRMT1 regulates cell growth via downregulation of CDKN1A in HCC Oncotarget 2017 8 115444 115455 10.18632/oncotarget.23296577778429383172 Search in Google Scholar

Shailesh H., Zakaria Z.Z., Baiocchi R., Sif S.: Protein arginine methyltransferase 5 (PRMT5) dysregulation in cancer. Oncotarget, 2018; 9: 36705–36718 ShaileshH. ZakariaZ.Z. BaiocchiR. SifS. Protein arginine methyltransferase 5 (PRMT5) dysregulation in cancer Oncotarget 2018 9 36705 36718 10.18632/oncotarget.26404629117330613353 Search in Google Scholar

Shen Y., Zhong J., Liu J., Liu K., Zhao J., Xu T., Zeng T., Li Z., Chen Y., Ding W., Wen G., Zu X., Cao R.: Protein arginine N-methyltransferase 2 reverses tamoxifen resistance in breast cancer cells through suppression of ER-α36. Oncol. Rep., 2018; 39: 2604–2612 ShenY. ZhongJ. LiuJ. LiuK. ZhaoJ. XuT. ZengT. LiZ. ChenY. DingW. WenG. ZuX. CaoR. Protein arginine N-methyltransferase 2 reverses tamoxifen resistance in breast cancer cells through suppression of ER-α36 Oncol. Rep. 2018 39 2604 2612 Search in Google Scholar

Smith E., Zhou W., Shindiapina P., Sif S., Li C., Baiocchi R.A.: Recent advances in targeting protein arginine methyltransferase enzymes in cancer therapy. Expert Opin. Ther. Targets, 2018; 22: 527–545 SmithE. ZhouW. ShindiapinaP. SifS. LiC. BaiocchiR.A. Recent advances in targeting protein arginine methyltransferase enzymes in cancer therapy Expert Opin. Ther. Targets 2018 22 527 545 10.1080/14728222.2018.1474203631170529781349 Search in Google Scholar

Stopa N., Krebs J.E., Shechter D.: The PRMT5 arginine methyl transferase: Many roles in development, cancer and beyond. Cell Mol. Life. Sci., 2015; 72: 2041–2059 StopaN. KrebsJ.E. ShechterD. The PRMT5 arginine methyl transferase: Many roles in development, cancer and beyond Cell Mol. Life. Sci. 2015 72 2041 2059 10.1007/s00018-015-1847-9443036825662273 Search in Google Scholar

Tewary S.K., Zheng Y.G., Ho M.C.: Protein arginine methyltransferases: Insights into the enzyme structure and mechanism at the atomic level. Cell. Mol. Life Sci., 2019; 76: 2917–2932 TewaryS.K. ZhengY.G. HoM.C. Protein arginine methyltransferases: Insights into the enzyme structure and mechanism at the atomic level Cell. Mol. Life Sci. 2019 76 2917 2932 10.1007/s00018-019-03145-x674177731123777 Search in Google Scholar

Vhuiyan M., Thomas D., Hossen F., Frankel A.: Targeting protein arginine N-methyltransferases with peptide-based inhibitors: Opportunities and challenges. Future Med. Chem., 2013; 5: 2199–2206 VhuiyanM. ThomasD. HossenF. FrankelA. Targeting protein arginine N-methyltransferases with peptide-based inhibitors: Opportunities and challenges Future Med. Chem. 2013 5 2199 2206 10.4155/fmc.13.18424261895 Search in Google Scholar

Wang S.M., Dowhan D.H., Muscat G.E.: Epigenetic arginine methylation in breast cancer: Emerging therapeutic strategies. J. Mol. Endocrinol., 2019; 62: R223–R237 WangS.M. DowhanD.H. MuscatG.E. Epigenetic arginine methylation in breast cancer: Emerging therapeutic strategies J. Mol. Endocrinol. 2019 62 R223 R237 10.1530/JME-18-022430620710 Search in Google Scholar

Wang W.J., Hsu J.M., Wang Y.N., Lee H.H., Yamaguchi H., Liao H.W., Hung M.C.: An essential role of PRMT1-mediated EGFR methylation in EGFR activation by ribonuclease 5. Am. J. Cancer Res., 2019; 9: 180–185 WangW.J. HsuJ.M. WangY.N. LeeH.H. YamaguchiH. LiaoH.W. HungM.C. An essential role of PRMT1-mediated EGFR methylation in EGFR activation by ribonuclease 5 Am. J. Cancer Res. 2019 9 180 185 Search in Google Scholar

Wang Y.P., Zhou W., Wang J., Hung X., Zuo Y., Wang T.S., Gao X., Xu Y.Y., Zou S.W., Liu Y.B., Cheng J.K., Lei Q.Y.: Arginine methylation of MDH1 by CARM1 inhibits glutamine metabolism and suppresses pancreatic cancer. Mol. Cell, 2016; 64: 673–687 WangY.P. ZhouW. WangJ. HungX. ZuoY. WangT.S. GaoX. XuY.Y. ZouS.W. LiuY.B. ChengJ.K. LeiQ.Y. Arginine methylation of MDH1 by CARM1 inhibits glutamine metabolism and suppresses pancreatic cancer Mol. Cell 2016 64 673 687 10.1016/j.molcel.2016.09.02827840030 Search in Google Scholar

Webb L.M., Amici S.A., Jablonski K.A., Savardekar H., Panfil A.R., Li L., Zhou W., Peine K., Karkhanis V., Bachelder E.M., Ainslie K.M., Green P.L., Li C., Baiocchi R.A., Gueraude-Arellano M.: PRMT5-selective inhibitors suppress inflammatory T cell responses and experimental autoimmune encephalomyelitis. J. Immunol., 2017; 198:1439–1451 WebbL.M. AmiciS.A. JablonskiK.A. SavardekarH. PanfilA.R. LiL. ZhouW. PeineK. KarkhanisV. BachelderE.M. AinslieK.M. GreenP.L. LiC. BaiocchiR.A. Gueraude-ArellanoM. PRMT5-selective inhibitors suppress inflammatory T cell responses and experimental autoimmune encephalomyelitis J. Immunol. 2017 198 1439 1451 10.4049/jimmunol.1601702529258728087667 Search in Google Scholar

Ye F., Zhang W., Ye F., Zhang W., Ye X., Jin J., Lv Z., Luo C.: Identification of selective, cell active inhibitors of protein arginine methyltransferase 5 through structure-based virtual screening and biological assays. J. Chem. Inf. Model., 2018; 58: 1066–1073 YeF. ZhangW. YeF. ZhangW. YeX. JinJ. LvZ. LuoC. Identification of selective, cell active inhibitors of protein arginine methyltransferase 5 through structure-based virtual screening and biological assays J. Chem. Inf. Model. 2018 58 1066 1073 10.1021/acs.jcim.8b0005029672052 Search in Google Scholar

Ye Y., Zhang B., Mao R., Zhang C., Wang Y., Xing J., Liu Y.C., Luo X., Ding H., Yang Y., Zhou B., Jiang H., Chen K., Luo C., Zheng M.: Discovery and optimization of selective inhibitors of protein arginine methyltransferase 5 by docking-based virtual screening. Org. Biomol. Chem., 2017; 15: 3648–3661 YeY. ZhangB. MaoR. ZhangC. WangY. XingJ. LiuY.C. LuoX. DingH. YangY. ZhouB. JiangH. ChenK. LuoC. ZhengM. Discovery and optimization of selective inhibitors of protein arginine methyltransferase 5 by docking-based virtual screening Org. Biomol. Chem. 2017 15 3648 3661 10.1039/C7OB00070G Search in Google Scholar

Yost J.M., Korboukh I., Liu F., Gao C., Jin J.: Targets in epigenetics: Inhibiting the methyl writers of the histone code. Curr. Chem. Genomics, 2011; 5: 72–84 YostJ.M. KorboukhI. LiuF. GaoC. JinJ. Targets in epigenetics: Inhibiting the methyl writers of the histone code Curr. Chem. Genomics 2011 5 72 84 10.2174/1875397301005010072317889621966347 Search in Google Scholar

Zhang B., Chen X., Ge S., Peng C., Zhang S., Chen X., Liu T., Zhang W.: Arginine methyltransferase inhibitor-1 inhibits sarcoma viability in vitro and in vivo. Oncol. Lett., 2018; 16: 2161–2166 ZhangB. ChenX. GeS. PengC. ZhangS. ChenX. LiuT. ZhangW. Arginine methyltransferase inhibitor-1 inhibits sarcoma viability in vitro and in vivo Oncol. Lett. 2018 16 2161 2166 10.3892/ol.2018.8929603647730008914 Search in Google Scholar

Zhang B., Zhang S., Zhu L., Chen X., Zhao Y., Chao L., Zhou J., Wang X., Zhang X., Ma N.: Arginine methyltransferase inhibitor 1 inhibits gastric cancer by downregulating eIF4E and targeting PRMT5. Toxicol. Appl. Pharmacol., 2017; 336: 1–7 ZhangB. ZhangS. ZhuL. ChenX. ZhaoY. ChaoL. ZhouJ. WangX. ZhangX. MaN. Arginine methyltransferase inhibitor 1 inhibits gastric cancer by downregulating eIF4E and targeting PRMT5 Toxicol. Appl. Pharmacol. 2017 336 1 7 10.1016/j.taap.2017.10.00228987382 Search in Google Scholar

Zhao X., Zhou D., Liu Y., Li C., Zhao X., Li Y., Li W.: Ganoderma lucidum polysaccharide inhibits prostate cancer cell migration via the protein arginine methyltransferase 6 signaling pathway. Mol. Med. Rep., 2018; 17: 147–157 ZhaoX. ZhouD. LiuY. LiC. ZhaoX. LiY. LiW. Ganoderma lucidum polysaccharide inhibits prostate cancer cell migration via the protein arginine methyltransferase 6 signaling pathway Mol. Med. Rep. 2018 17 147 157 10.3892/mmr.2017.7904578008529115463 Search in Google Scholar

Zhao Y., Lu Q., Li C., Wang X., Jiang L., Huang L., Wang C., Chen H.: PRMT1 regulates the tumour-initiating properties of esophageal squamous cell carcinoma through histone H4 arginine methylation coupled with transcriptional activation. Cell Death. Dis., 2019; 10: 359 ZhaoY. LuQ. LiC. WangX. JiangL. HuangL. WangC. ChenH. PRMT1 regulates the tumour-initiating properties of esophageal squamous cell carcinoma through histone H4 arginine methylation coupled with transcriptional activation Cell Death. Dis. 2019 10 359 10.1038/s41419-019-1595-0649484431043582 Search in Google Scholar

Zhong J., Cao R.X., Hong T., Yang J., Zu X.Y., Xiao X.H., Liu J.H., Wen G.B.: Identification and expression analysis of a novel transcript of the human PRMT2 gene resulted from alternative polyadenylation in breast cancer. Gene, 2011; 487: 1–9 ZhongJ. CaoR.X. HongT. YangJ. ZuX.Y. XiaoX.H. LiuJ.H. WenG.B. Identification and expression analysis of a novel transcript of the human PRMT2 gene resulted from alternative polyadenylation in breast cancer Gene 2011 487 1 9 10.1016/j.gene.2011.06.02221820040 Search in Google Scholar

Zhong J., Cao R.X., Liu J.H., Liu Y.B., Wang J., Liu L.P., Chen Y.J., Yang J., Zhang Q.H., Wu Y., Ding W.J., Hong T., Xiao X.H., Zu X.Y., Wen G.B.: Nuclear loss of protein arginine N-methyltransferase 2 in breast carcinoma is associated with tumor grade and overexpression of cyclin D1 protein. Oncogene, 2014; 33: 5546–5558 ZhongJ. CaoR.X. LiuJ.H. LiuY.B. WangJ. LiuL.P. ChenY.J. YangJ. ZhangQ.H. WuY. DingW.J. HongT. XiaoX.H. ZuX.Y. WenG.B. Nuclear loss of protein arginine N-methyltransferase 2 in breast carcinoma is associated with tumor grade and overexpression of cyclin D1 protein Oncogene 2014 33 5546 5558 10.1038/onc.2013.50024292672 Search in Google Scholar

Zhong J., Chen Y.J., Chen L., Shen Y.Y., Zhang Q.H., Yang J., Cao R.X., Zu X.Y., Wen G.B.: PRMT2β, a C-terminal splice variant of PRMT2β, inhibits the growth of breast cancer cells. Oncol. Rep., 2017, 38: 1303–1311 ZhongJ. ChenY.J. ChenL. ShenY.Y. ZhangQ.H. YangJ. CaoR.X. ZuX.Y. WenG.B. PRMT2β, a C-terminal splice variant of PRMT2β, inhibits the growth of breast cancer cells Oncol. Rep. 2017 38 1303 1311 10.3892/or.2017.578628677794 Search in Google Scholar

Zhong X.Y., Yuan X.M., Xu Y.Y., Yin M., Yan W.W., Zou S.W., Wei L.M., Lu H.J., Wang Y.P., Lei Q.Y.: CARM1 methylates GAPDH to regulate glucose metabolism and is suppressed in liver cancer. Cell. Rep., 2018; 24: 3207–3223 ZhongX.Y. YuanX.M. XuY.Y. YinM. YanW.W. ZouS.W. WeiL.M. LuH.J. WangY.P. LeiQ.Y. CARM1 methylates GAPDH to regulate glucose metabolism and is suppressed in liver cancer Cell. Rep. 2018 24 3207 3223 10.1016/j.celrep.2018.08.06630232003 Search in Google Scholar

Zhu K., Jiang C., Tao H., Liu J., Zhang H., Luo C.: Identification of a novel selective small-molecule inhibitor of protein arginine methyltransferase 5 (PRMT5) by virtual screening, resynthesis and biological evaluations. Bioorg. Med. Chem. Lett., 2018; 28: 1476–1483 ZhuK. JiangC. TaoH. LiuJ. ZhangH. LuoC. Identification of a novel selective small-molecule inhibitor of protein arginine methyltransferase 5 (PRMT5) by virtual screening, resynthesis and biological evaluations Bioorg. Med. Chem. Lett. 2018 28 1476 1483 10.1016/j.bmcl.2018.03.08729628326 Search in Google Scholar

eISSN:
1732-2693
Language:
English