Open Access

Control of a Doubly Fed Induction Generator at Grid Voltage Imbalance


[1] Liserre M., Cardenas R., Molinas M., Rodriguez J., Overview of multi-MW wind turbines and wind parks, IEEE Trans. Ind. Electron., 2011, 58(4), 1081–1095.10.1109/TIE.2010.2103910Search in Google Scholar

[2] Müller S., Deicke M., De Doncker R., Doubly fed induction generator systems for wind turbines, Ind. Appl. Mag. IEEE, 2002, 8(3), 26–33.10.1109/2943.999610Open DOISearch in Google Scholar

[3] Kuwabara T., Shibuya A., Furuta H., Kita E., Mitsuhashi K., Design and dynamic response characteristics of 400 MW adjustable speed pumped storage unit for Ohkawachi Power Station, IEEE Trans. Energy Convers., 1996, 11(2), 376–382.10.1109/60.507649Search in Google Scholar

[4] Waris T., Nayar C.V., Variable speed constant frequency diesel power conversion system using doubly fed induction generator (DFIG), 2008 IEEE Power Electronics Specialists Conference, 2008, 2728–2734.10.1109/PESC.2008.4592357Search in Google Scholar

[5] Akagi H., Sato H., Control and performance of a doubly-fed induction machine intended for a flywheel energy storage system IEEE Trans. Power Electron., 2002, 17(1), 109–116.10.1109/63.988676Open DOISearch in Google Scholar

[6] Pannell G, Atkinson D.J.Zahawi B., Minimum-threshold crowbar for a fault-ride-through grid-codecompliant dfig wind turbine, IEEE Trans. En. Conv., 2010, 25(3), 750–759.10.1109/TEC.2010.2046492Search in Google Scholar

[7] Geng H., Liu C., Yang G., LVRT capability of DFIG-based WECS under asymmetrical grid fault condition, IEEE Trans. Ind. Electron., 2013, 60(6), 2495–2509.10.1109/TIE.2012.2226417Open DOISearch in Google Scholar

[8] Santos-Martin D., Rodriguez-Amenedo J.L., Arnalte S., Direct power control applied to doubly fed induction generator under unbalanced grid voltage conditions, IEEE Trans. Power Electron., 2008, 23(5), 2328–2336.10.1109/TPEL.2008.2001907Search in Google Scholar

[9] Kim Y., Lee D., Active and reactive power control of DFIG for wind energy conversion under unbalanced grid voltage, 5th Int. Power Electron. Motion Control Conf. IPEMC ’06, 2006.Search in Google Scholar

[10] Qiao W., Harley R.G., Improved control of DFIG wind turbines for operation with unbalanced network voltages, Conf. Rec. IAS Ann. Meet. IEEE Ind. Appl. Soc., 2008, 1–7.10.1109/08IAS.2008.153Search in Google Scholar

[11] Xu L., Wang Y., Dynamic modeling and control of DFIG-based wind turbines under unbalanced network conditions, IEEE Trans. Power Syst., 2007, 22(1), 314–323.10.1109/TPWRS.2006.889113Search in Google Scholar

[12] Song Y., Nian H., Modularized control strategy and performance analysis of DFIG system under unbalanced and harmonic grid voltage, IEEE Trans. Power Electron., 2015, 30(9), 4831–4842.10.1109/TPEL.2014.2366494Search in Google Scholar

[13] Lascu C., Asiminoaei L., Boldea I., Blaabjerg F., High performance current controller for selective harmonic compensation in active power filters, IEEE Trans. Power Electron., 2007, 22(5), 1826–1835.10.1109/TPEL.2007.904060Open DOISearch in Google Scholar

[14] Song Y., Zhou D., Blaabjerg F., Impedance based analysis of DFIG stator current unbalance and distortion suppression strategies, Industrial Electron. Conf., 2016, 4151–4157.10.1109/IECON.2016.7793220Search in Google Scholar

[15] Hu J., He Y., Xu L., Williams B.W., Improved control of DFIG systems during network unbalance using PI-R current regulators, IEEE Trans. Ind. Electron., 2009, 56(2), 439–451.10.1109/TIE.2008.2006952Search in Google Scholar

[16] Santos-Martin D., Rodriguez-Amenedo J.L., Arnalte S., Direct power control applied to doubly fed induction generator under unbalanced grid voltage conditions, IEEE Trans. Power Electron., 2008, 23(5), 2328–2336.10.1109/TPEL.2008.2001907Open DOISearch in Google Scholar

[17] Hu J., Zhu J., Dorrell D.G., Predictive direct power control of doubly fed induction generators under unbalanced grid voltage conditions for power quality improvement, IEEE Trans. Sustain. Energy, 2015, 6(3), 943–950.10.1109/TSTE.2014.2341244Search in Google Scholar

[18] Shang L., Hu J., Sliding-mode-based direct power control of grid-connected wind-turbine-driven doubly fed induction generators under unbalanced grid voltage conditions, IEEE Trans. En. Conv., 2012, 27(2), 362–373.10.1109/TEC.2011.2180389Search in Google Scholar

[19] Zhou P., He Y., Su D., Improved direct power control of a DFIG-based wind turbine during network unbalance, IEEE Trans. Power Electron., 2009, 24(11), 2465–2474.10.1109/TPEL.2009.2032188Search in Google Scholar

[20] Nian H., Song Y., Zhou P., He Y., Improved direct power control of a wind turbine driven doubly fed induction generator during transient grid voltage unbalance, IEEE Trans En. Conv., 2011, 26(3), 976–986.10.1109/TEC.2011.2158436Search in Google Scholar

[21] Akagi H., Kanazawa Y., Nabae A., Generalized theory of the instantaneous reactive power in threephase circuits, Int. Power Electronics Conf., 1983, 1375–1386.Search in Google Scholar

[22] Luszczyk T., Iwanski G., Comparison of decoupling structures in a rotor current control of doubly fed induction generator, 8th Int. Conf. Exhib. on Ecological Vehicles and Renewable Energies EVER ’13, 2013, Monte Carlo, Monaco, 1–5.10.1109/EVER.2013.6521619Search in Google Scholar

[23] Yepes A.G., Freijedo F.D., Lopez Ó., Doval-Gandoy J., High-performance digital resonant controllers implemented with two integrators, IEEE Trans. Power Electron., 2011, 26(2), 563–576.10.1109/TPEL.2010.2066290Open DOISearch in Google Scholar

Publication timeframe:
Volume Open
Journal Subjects:
Computer Sciences, Artificial Intelligence, Engineering, Electrical Engineering, Electronics