Open Access

Wind Loads for Designing the Main Wind-Force Resisting Systems of Cylindrical Free-Standing Canopy Roofs


Cite

[1] Architectural Institute of Japan, Recommendations of Loads on Buildings, 2015 (in Japanese).Search in Google Scholar

[2] Ginger J.D., Letchford C.W., Wind loads on planar canopy roofs, Part 2 Fluctuating pressure distributions and correlations, Journal of Wind Engineering and Industrial Aerodynamics, Vol. 51, 1994, 353–370.10.1016/0167-6105(94)90068-XSearch in Google Scholar

[3] Gumley S.J., A parametric study of extreme pressures for the static design of canopy structures, Journal of Wind Engineering and Industrial Aerodynamics, Vol. 16, 1984, 43–56.10.1016/0167-6105(84)90048-5Search in Google Scholar

[4] Letchford C.W., Ginger J.D., Wind loads on planar canopy roofs, Part 1 Mean pressure distributions, Journal of Wind Engineering and Industrial Aerodynamics, Vol. 45, 1992, 25–45.10.1016/0167-6105(92)90004-TSearch in Google Scholar

[5] Macdonald P.A., Kwok K.C.S., Holmes J.D., Wind loads on circular storage bins, silos and tanks: I. Point pressure measurements on isolated structures, Journal of Wind Engineering and Industrial Aerodynamics, Vol. 31, 1988, 165–188.10.1016/0167-6105(88)90003-7Search in Google Scholar

[6] Natalini B., Marighetti J.O., Natalini M.B., Wind tunnel modeling of mean pressures on planar canopy roof, Journal of Wind Engineering and Industrial Aerodynamics, Vol. 90, 2002, 427–439.10.1016/S0167-6105(01)00205-7Search in Google Scholar

[7] Natalini M.B., Morel C., Natalini B., Mean loads on vaulted canopy roofs, Journal of Wind Engineering and Industrial Aerodynamics, Vol. 119, 2013, 102–113.10.1016/j.jweia.2013.05.001Search in Google Scholar

[8] Takeda F., Yoshino T., Uematsu Y., Design wind force coefficients for hyperbolic paraboloid free roofs, Journal of Physical Science and Application, Vol. 4(1), 2014, 1–19.Search in Google Scholar

[9] Ueda H., Hagura H., Oda H., Characteristics of stress generated by wind pressures and wind loads acting on stiff two-hinged arches supporting a barrel roof, Journal of Structural and Construction Engineering, Architectural Institute of Japan, Vol. 496, 1997, 29–35 (in Japanese).10.3130/aijs.62.29_5Search in Google Scholar

[10] Uematsu Y., Iizumi E., Stathopoulos T., Wind loads on free-standing canopy roofs: Part 1 local wind pressures, Journal of Wind Engineering and Industrial Aerodynamics, Vol. 96, 2008, 1015–1028.10.1016/j.jweia.2007.06.047Search in Google Scholar

[11] Uematsu Y., Iizumi E., Stathopoulos T., Wind loads on free-standing canopy roofs: Part 2 overall wind forces, Journal of Wind Engineering and Industrial Aerodynamics, Vol. 96, 2008, 1029–1042.10.1016/j.jweia.2007.06.026Search in Google Scholar

[12] Uematsu Y., Sakurai H., Miyamoto Y., Gavanski E., Wind force coefficients for designing porous canopy roofs, Journal of Civil Engineering and Architecture, Vol. 7(9), 2013, 1047–1055.10.17265/1934-7359/2013.09.001Search in Google Scholar

[13] Uematsu Y., Miyamoto Y., Gavanski E., Wind loading on a hyperbolic paraboloid free roof, Journal of Civil Engineering and Architecture, Vol. 8(10), 2014, 1–19.10.17265/1934-7359/2014.10.004Search in Google Scholar

[14] Uematsu Y., Miyamoto Y., Gavanski E., Effects of porosity on the Wind loads on a hyperbolic paraboloid canopy roof. Journal of Civil Engineering and Architecture, Vol. 9(6), 2015, 715–726.10.17265/1934-7359/2015.06.009Search in Google Scholar

[15] Uematsu Y., Iizumi E., Stathopoulos, T., Wind loads on free-standing canopy roofs Part 3 Validity and application of the proposed wind force coefficients, Journal of Wind Engineering, JAWE, Vol. 31(4), 2006, 115–122 (in Japanese).10.5359/jwe.31.115Search in Google Scholar

[16] Uematsu Y., Iizumi E., Stathopoulos, T., Wind force coefficients for the main wind force resisting system of a free-standing canopy roof of cantilever type, Proceedings of the 19th National Symposium on Wind Engineering, 2006, 343–348 (in Japanese).Search in Google Scholar