1. bookVolume 116 (2019): Issue 7 (July 2019)
Journal Details
License
Format
Journal
eISSN
2353-737X
First Published
20 May 2020
Publication timeframe
1 time per year
Languages
English
access type Open Access

Model Tests of Dynamic Action on the Atmospheric Boundary Layer – Linear Configuration of Ventilation Towers on a Rough Terrain

Published Online: 16 May 2020
Volume & Issue: Volume 116 (2019) - Issue 7 (July 2019)
Page range: 63 - 79
Received: 03 Jun 2019
Journal Details
License
Format
Journal
eISSN
2353-737X
First Published
20 May 2020
Publication timeframe
1 time per year
Languages
English
Abstract

This paper describes model tests conducted at the Wind Engineering Laboratory of Cracow University of Technology as the first stage of studies on dynamic action on the atmospheric boundary layer in order to reduce the effects of air pollution and smog. It focuses on the cooperation between a series of ventilation towers placed one by one (or row by row) in order to generate a continuous airstream with sufficient velocity to aid the natural ventilation of urban areas. The tests were conducted for three different terrain categories with varying roughness. Also tested were different wind speeds, different spacing between the towers and different configurations of the towers in each row. As a preliminary set of tests, this enabled verification of the feasibility of the solution and its effectiveness on a rough terrain that simulates urban areas.

Keywords

[1] Błażejczyk K., System wymiany i regeneracji powietrza jako czynnik poprawy warunków aerosanitarnych i bioklimatycznych w mieście, Eds: Degórska B., Baścik M., Środowisko przyrodnicze Krakowa: zasoby - ochrona - kształtowanie, IGiGP UJ, UMK, WGiK PW, Kraków 2013, 187–190.Search in Google Scholar

[2] Chu A.K.M., Kwok R.C.W., Yu K.N., Study of pollution dispersion in urban areas using Computational Fluid Dynamics (CFD) and Geographic Information System (GIS), Environmental Modelling & Software, 20, 2005, 273–277.10.1016/S1364-8152(04)00127-6Search in Google Scholar

[3] Wingstedt E.M.M., Osnes A.N, Akerwik E., Eriksson D., Pettersson Reif B.A., Large-eddy simulation of dense gas dispersion over a simplified urban area, Atmospheric Environment 152, 2017, 605–616.10.1016/j.atmosenv.2016.12.039Search in Google Scholar

[4] Carpentieri M., Robins EnFlo A.G., Wind tunnel experiments of flow and dispersion in a real urban area, The 7th International Conference on Urban Climate, 29 June – 3 July, Yokohama 2009.Search in Google Scholar

[5] Buccolieri R., Sandberg M., Di Sabatino S., City breathability and its link to pollutant concentration distribution within urban-like geometries, Atmospheric Environment 44, 2010, 1894–1903.10.1016/j.atmosenv.2010.02.022Search in Google Scholar

[6] Ramponi R., Blocken B., de Coo L.B., Janssen W. D., CFD simulation of outdoor ventilation of generic urban configurations with different urban densities and equal and unequal street widths, Building and Environment 92, 2015, 152–166.10.1016/j.buildenv.2015.04.018Search in Google Scholar

[7] Oke T.R., Boundary layer climates, Methuen, New York 1978.Search in Google Scholar

[8] Sorbjan Z., Turbulence and diffusion in the lower atmosphere, PWN, Warszawa 1983.Search in Google Scholar

[9] Hang J., Sandberg M., Li Y., Effect of urban morphology on wind condition in idealized city models, Atmospheric Environment 43, 2009, 869–878.10.1016/j.atmosenv.2008.10.040Search in Google Scholar

[10] Jiang Y., Alexander D., Jenkins H., Arthur R., Chen Q., Natural ventilation in buildings, measurement in a wind tunnel and numerical simulation with large–eddy simulation, Journal of Wind Engineering and Industrial Aerodynamics 91, 2003, 331–353.10.1016/S0167-6105(02)00380-XSearch in Google Scholar

[11] Omrani S., Garcia–Hansen V., Capra B., Drogemuller R., Natural ventilation in multi– storey buildings, Design process and review of evaluation tools, Building and Environment 116, 2017, 182–194.10.1016/j.buildenv.2017.02.012Search in Google Scholar

[12] Yang L., Qian F., Song D.X., Zheng K.J., Research on Urban Heat–island Effect, Procedia Engineering 169, 2016, 11–18.10.1016/j.proeng.2016.10.002Search in Google Scholar

[13] Yang L., Li Y., Thermal conditions and ventilation in an ideal city model of Hong Kong, Energy and Buildings 43, 2011, 1139–1148.10.1016/j.enbuild.2010.06.005Search in Google Scholar

[14] Lewińska J., Klimat miasta. Vademecum urbanisty, Instytut Gospodarki Przestrzennej i Komunalnej, Oddział w Krakowie, 1991.Search in Google Scholar

[15] Cao Z., Wang Y., Duan M., Zhu H., Study of the vortex principle for improving the efficiency of an exhaust ventilation system, Energy and Buildings 142, 2017, 39–48.10.1016/j.enbuild.2017.03.007Search in Google Scholar

[16] US 4164256 A, Cooling tower with forced ventilation and natural draft.Search in Google Scholar

[17] US 5425413 A, Method to hinder the formation and to break–up overhead atmospheric inversions, enhance ground level air circulation and improve urban air quality.Search in Google Scholar

[18] Spurr G., The penetration of atmospheric inversions by hot plumes, Journal of Meteorology, Vol. 16, 30–37, 1959.10.1175/1520-0469(1959)016<0030:TPOAIB>2.0.CO;2Search in Google Scholar

[19] DE 3503138 A1, Process for reducing smog by the chimney inversion/injector effect.Search in Google Scholar

[20] Blackman K., Perret L., Savory E., Piquet T., Field and wind tunnel modelling of an idealized street canyon flow, Atmospheric Environment 106, 2015, 139–153.10.1016/j.atmosenv.2015.01.067Search in Google Scholar

[21] Zhai Z.J., Brannon B., Performance comparison of destratification fans for large spaces, Procedia Engineering 146, 2016, 40–46.10.1016/j.proeng.2016.06.350Search in Google Scholar

[22] CN 203620447 U, Device for preventing pollution of air suspended particles in urban industrial district.Search in Google Scholar

[23] Flaga A., Kryteria podobieństwa modelowego dla równoległego układu wież wentylacyjnych, Research Report, Wind Engineering Laboratory, Cracow University of Technology, Kraków 2017.Search in Google Scholar

[24] Flaga A., Flaga Ł., Krajewski P., Pistol A., Badania wstępne możliwości dynamicznego oddziaływania na warstwę przyziemną. Etap I – Pomiar pola prędkości przepływu i zasięgu strumienia powietrza generowanego przez modele wentylatorów/wież wentylacyjnych w różnych wariantach ich konfiguracji, Research Report, Wind Engineering Laboratory, Cracow University of Technology, Kraków 2017.Search in Google Scholar

[25] PN–EN 1991–1–4. Eurokod 1. Oddziaływania na konstrukcje. Część 1–4, Oddziaływania ogólne – Oddziaływania wiatru [in Polish].Search in Google Scholar

[26] Flaga A., Inżynieria wiatrowa. Podstawy i zastosowania, Arkady, Warszawa 2008.Search in Google Scholar

[27] Flaga A., Flaga Ł., Krajewski P., Pistol A., Badania wstępne możliwości dynamicznego oddziaływania na warstwę przyziemną. Etap III – Badania w tunelu aerodynamicznym wybranych zagadnień z Etapów I i II przy uwzględnieniu wpływu chropowatości podłoża, zabudowy miejskiej), Research Report, Wind Engineering Laboratory, Cracow University of Technology, Kraków 2017.Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo