1. bookVolume 115 (2018): Issue 1 (January 2018)
Journal Details
License
Format
Journal
eISSN
2353-737X
First Published
20 May 2020
Publication timeframe
1 time per year
Languages
English
access type Open Access

Numerical Analysis of Crack Initiation and Propagation in an Aluminium Sample

Published Online: 16 May 2020
Volume & Issue: Volume 115 (2018) - Issue 1 (January 2018)
Page range: 187 - 194
Received: 20 Dec 2017
Journal Details
License
Format
Journal
eISSN
2353-737X
First Published
20 May 2020
Publication timeframe
1 time per year
Languages
English
Abstract

This paper reports an analysis of simulated crack propagation in an aluminium sample depending on the direction of external loads. The objective of the study was to perform a numerical analysis of crack propagation as well as to determine regions which are most susceptible to failure. The object of study was created from numerical analysis of material failure due to fibre separation using Abaqus 6.14. The modelling of crack propagation was performed using the numerical xFEM method for separating material fibres irrespective of the finite element mesh.

Keywords

[1] Banaszek J., Examples of calculations within machines constructions basics Part II. The University Publishing House, 1996, 196–197.Search in Google Scholar

[2] Dębski H., Koszałka G., Ferdynus M., Application of FEM in the analysis of the structure of a trailer supporting frame with variable operation parameters. Eksploatacja i Niezawodnosc – Maintenance and Reliability, 2012, 14 (2), 107–114.Search in Google Scholar

[3] Dębski H., Rudawska A., Experimental and numerical analysis of adhesively bonded aluminium alloy sheets joints. Eksploatacja i Niezawodnosc – Maintenance and Reliability, 2011, 1, 4–10.Search in Google Scholar

[4] Gajewski J., Nowakowski P., Różyło P., Prognozowanie występowania pęknięć w oparciu o system FEM-MLP, Logistyka 2015, 3, 1381–1386.Search in Google Scholar

[5] Gill P., Davey K., Analysis of thermo-mechanical behaviour of a crack using XFEM for Leak-before-Break assessments, International Journal of Solids and Structures, 2014, Vol. 51, 2062–2072.10.1016/j.ijsolstr.2014.02.007Search in Google Scholar

[6] Jonak J., Zagadnienia mechaniki pękania i skrawania materiałów, Politechnika Lubelska, Lublin 2010, 90–95.Search in Google Scholar

[7] Kąkol W., Łodygowski T., Metoda elementów skończonych w wybranych zagadnieniach mechaniki konstrukcji inżynierskich. Politechnika Poznańska, Poznań 2003.Search in Google Scholar

[8] Kleiber M., Wprowadzenie do metody elementów skończonych, Biblioteka Mechaniki Stosowanej IPPT PAN, PWN, Warszawa-Poznań 1985.Search in Google Scholar

[9] Lonkwic P., Różyło P., Theoretical and experimental analysis of loading impact from the progressive gear on the lift braking distance with the use of the free fall method. Advances in Science and Technology Research Journal, 2016, 10(30), 103–109.10.12913/22998624/62628Search in Google Scholar

[10] Lonkwic P., Różyło P., Dębski H., Numerical and experimental analysis of the progressive gear body with the use of finite-element method. Eksploatacja i Niezawodność – Maintenance and Reliability, 2015, Vol. 17, No. 4, 544–550.10.17531/ein.2015.4.9Search in Google Scholar

[11] Moes N., Belytschko T., Extended finite element method for cohesive crack growth. Northwestern University, USA 2001.Search in Google Scholar

[12] Nasirmanesh A., Mohammadi S., XFEM buckling analysis of cracked composite plates, Composite Structures, 2015, Vol. 131, 333–343.10.1016/j.compstruct.2015.05.013Search in Google Scholar

[13] Naderi M., Iyyer N., Fatigue life prediction of cracked attachment lugs using XFEM, International Journal of Fatigue, 2015, Vol. 77, 186–193.10.1016/j.ijfatigue.2015.02.021Search in Google Scholar

[14] Różyło P., Numerical analysis of crack propagation in a steel specimen under bending, Applied Computer Science 2015, Vol. 11, No. 4, 20–29.Search in Google Scholar

[15] Różyło P., Optimization of I-section profile design by the finite element method, Advances in Science and Technology Research Journal, 2016, 10(29), 52–56.10.12913/22998624/61931Search in Google Scholar

[16] Różyło P., Gajewski J., Nowakowski P., Machrowska A., Zastosowanie sieci RBF w analizie pękania elementów maszyn, Logistyka 2015, No. 3, 4172–4186.Search in Google Scholar

[17] Różyło P., Wójcik Ł., Comparison of numerical and experimental analysis of the crack propagation process, Applied Computer Science 2015, Vol. 11, No. 2, 60–67.Search in Google Scholar

[18] Zienkiewicz O.C., Taylor R.L., Finite Element Method (5th Edition) Vol. 2, Solid Mechanics, Elsevier, 2000.Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo