1. bookVolume 115 (2018): Issue 1 (January 2018)
Journal Details
License
Format
Journal
eISSN
2353-737X
First Published
20 May 2020
Publication timeframe
1 time per year
Languages
English
access type Open Access

The Application of the ‘K-Nearest Neighbour’ Method to Evaluate Pressure Loss in Water Supply Lines

Published Online: 16 May 2020
Volume & Issue: Volume 115 (2018) - Issue 1 (January 2018)
Page range: 141 - 149
Received: 05 Jan 2018
Journal Details
License
Format
Journal
eISSN
2353-737X
First Published
20 May 2020
Publication timeframe
1 time per year
Languages
English
Abstract

Water supply systems are complex engineering structures; certainly, the most important part is the water distribution network. The design of this element requires calculations and many analyses to arrive at the best solution. The main task of the calculation is to determine the flow rates through pipes, to determine pressure losses, height of tanks, pressure required in the supply pumping station, pressure levels in the individual nodes of the network. Correct execution of the calculations requires careful evaluation of the results obtained and accuracy in the solutions applied. The issue of controlling the results of calculations is difficult to present in algorithmic form as these are mainly based on the experience and knowledge of the designer. Classes of decisions describing the problems of pressure loss in the pipework were established in order to evaluate the results of calculations. Numerical experiments were carried out in this paper to show how the ‘K-nearest neighbour’ method can be used to evaluate pressure loss in water pipes.

Keywords

[1] Biedugnis S., Metody informatyczne w wodociągach i kanalizacji, Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa 1998.Search in Google Scholar

[2] Rossman L.A., EPANET 2 User’s manual, EPA/600/R-00/057, National Risk Management Research Laboratory, U.S. Environmental Protection Agency, Cincinnati, OH, USA 2000.Search in Google Scholar

[3] Epp R., Fowler A.G., Efficient Code for steady state Flows in Networks, Journal of the Hydraulics Division, ASCE, Vol. 96, No. HY1, 1970, 43–56.10.1061/JYCEAJ.0002316Search in Google Scholar

[4] Adams R.W., Distribution Analysis by Electronic Computer, Institute of Water Engineers, Vol. 15, 1961, 415–428.Search in Google Scholar

[5] Knapik K., Dynamiczne modele w badaniach sieci wodociągowych, Wydawnictwo Politechniki Krakowskiej, Kraków 2000.Search in Google Scholar

[6] Pipe2010 Water Utility Modeling: A Comprehensive Guide to Hydraulic and Water Quality Modeling of Drinking Water Systems Using Pipe 2010, KyPipe, http://kypipe.com.Search in Google Scholar

[7] Królikowski A.J., Niezawodność działania systemów zaopatrzenia w wodę, Ekologia i Technika, Vol. 1, No. 1, 1993, 7–14.Search in Google Scholar

[8] Wagner J.M., Shamir U., Marks D.H., Water distribution reliability: simulation methods, Journal of water resources planning and management, Vol. 114, Issue 3, 1988, 276–294.10.1061/(ASCE)0733-9496(1988)114:3(276)Search in Google Scholar

[9] Wieczysty A., Niezawodność miejskich systemów zaopatrzenia w wodę: praca zbiorowa, Politechnika Krakowska, Kraków 1993.Search in Google Scholar

[10] Kwietniewski M., Roman M., Kloss-Trębaczkiewicz H., Niezawodność wodociągów i kanalizacji, Arkady, Warszawa1993.Search in Google Scholar

[11] Zimoch I., Bezpieczeństwo działania systemu zaopatrzenia w wodę w warunkach zmian jakości wody w sieci wodociągowej. Ochrona Środowiska, Vol. 31, Issue 3, 2009, 51–55.Search in Google Scholar

[12] Czapczuk A., System ekspertowy do oceny przepływów i strat ciśnienia w układzie dystrybucji wody, Dysertacja, Wydział Inżynierii Środowiska, Politechnika Warszawska, Warszawa 2013.Search in Google Scholar

[13] Czapczuk A., Dawidowicz J., Piekarski J., Metody sztucznej inteligencji w projektowaniu i eksploatacji systemów zaopatrzenia w wodę, Annual Set – The Environment Protection, Vol. 17, No. 2, 2015, 1527–1544.Search in Google Scholar

[14] Dawidowicz J., Evaluation of a pressure head and pressure zones in water distribution systems by artificial neural networks, Neural Computing & Application, 2017, doi:10.1007/ s00521-017-2844-8.Search in Google Scholar

[15] Dawidowicz J., Diagnostyka procesu obliczeń systemu dystrybucji wody z zastosowaniem modelowania neuronowego, Rozprawy Naukowe, No. 268, Oficyna Wydawnicza Politechniki Białostockiej, Białystok 2015.Search in Google Scholar

[16] Dawidowicz J., System ekspertowy do oceny układu systemu dystrybucji wody sporządzony za pomocą wnioskowania indukcyjnego, Annual Set the Environment Protection, Vol. 14, 2012, 650–659.Search in Google Scholar

[17] Gupta R.K., Analysis and Control of Flows in Pressurized Hydraulic Networks, PhD, UNESCO-IHE Institute, Delft 2006.Search in Google Scholar

[18] Łyp B., Wybrane problemy wodociągów i kanalizacji w przestrzennym planowaniu zagospodarowania miast, COIB, Warszawa 1992.Search in Google Scholar

[19] Bishop C.M., Neural Networks for Pattern Recognition, University Press, Oxford 1996.10.1201/9781420050646.ptb6Search in Google Scholar

[20] Triantaphyllou E., Felici G. (Eds.), Data mining and knowledge discovery approaches based on rule induction techniques, Vol. 6, Springer Science & Business Media, 2006.10.1007/0-387-34296-6Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo