1. bookVolume 114 (2017): Issue 11 (November 2017)
Journal Details
License
Format
Journal
eISSN
2353-737X
First Published
20 May 2020
Publication timeframe
1 time per year
Languages
English
access type Open Access

The flattening phenomenon in a seasonal variability analysis of the total nitrogen loads in river waters

Published Online: 29 May 2020
Volume & Issue: Volume 114 (2017) - Issue 11 (November 2017)
Page range: 137 - 159
Journal Details
License
Format
Journal
eISSN
2353-737X
First Published
20 May 2020
Publication timeframe
1 time per year
Languages
English
Abstract

This article shows the results of analyses conducted of the seasonal variability of nitrogen concentrations and loads, depending on plants growing season, this doesn’t seem to work, consider changing to something like ‘dependent upon the stage of the plant growing season,’ if that is what you mean as well as river flow and the precipitation levels in the basins of Middle Warta, Reda and Rega. The Macromodel DNS/SWAT, implemented for three basins, has been calibrated in calculations profiles of three river basins this is vague and unclear, the repetition of ‘three (river) basins’ is particularly confusing. The analysis confirmed the significant impact of cover crops on the retention of water and nutrients. The phenomenon of periodic decreases and stabilisation of nitrogen concentrations and loads in the surface waters flowing through the profiles of the enclosing water body was observed and analysed. The flattening phenomenon analysis of the phenomenon to me, the repetition of ‘phenomenon’ is confusing, you could clarify this by defining the second use of ‘phenomenon’ by, for example, inserting ‘of these decreases and stabilisation’ here can be used to assess the state of the ecosystem in the basin area.

Keywords

[1] Abbaspour K.C., SWAT-CUP2: SWAT Calibration and Uncertainty Programs – A User Manual, Department of Systems Analysis, Integrated Assessment and Modelling, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Duebendorf 2008.Search in Google Scholar

[2] BDL – Polish Local Database, http://stat.gov.pl/bdl/app/strona.html?p_name=indeks (access: 20.05.2015).Search in Google Scholar

[3] Bossard M., Feranec J., Otahel J., CORINE land cover technical guide – Addendum 2000, Technical report No. 40, European Environment Agency, Copenhagen 2000.Search in Google Scholar

[4] Burwell R.E., Timmons D.R., Holt R.F., Nutrient Transport in Surface Runoff as Influenced by Soil Cover and Seasonal Periods1, Soil Sci. Soc. Am. J., 39, 1975, 523-528.10.2136/sssaj1975.03615995003900030040xSearch in Google Scholar

[5] Byczkowski A., Hydrologia, vol. I, Warsaw University of Life Sciences, Warszawa 1999.Search in Google Scholar

[6] Cai Y., Guo L., Douglas T., Whitledge T., Seasonal variations in nutrient concentrations and speciation in the Chena River, Alaska, Journal of Geophysical Research, Vol. 113, 2008.10.1029/2008JG000733Search in Google Scholar

[7] Causse J., Baurès E., Mery Y., Jung A.V., Thomas O., Variability of N export in water: a review, Critical Reviews in Environmental Science and Technology, 2015.10.1080/10643389.2015.1010432Search in Google Scholar

[8] Centralny Ośrodek Dokumentacji Geodezyjneji Kartograficznej – national databases (Centre of Geodesic and Cartographic Documentation), www.codgik.gov.pl (access: 6.06.2015).Search in Google Scholar

[9] CORINE, CORINE LAND COVER, http://www.eea.europa.eu/themes/landuse/interactive/clc-download, July (access: 6.06.2015).Search in Google Scholar

[10] Dabrowska J., Ocena zawartości związków azotu i fosforu w wodach rzeki Trzemny, Infra-struktura i ekologia terenów wiejskich, (07) 2008.Search in Google Scholar

[11] Directive 2000/60/EC of the European Parliament and of the Council establishing a framework for Community action in the field of water policy, 2000.Search in Google Scholar

[12] Douglas C.L., King K.A., Zuzel J.F., Nitrogen and Phosphorus in Surface Runoff and Sediment from a Wheat-Pea Rotation in Northeastern Oregon, J. Environ. Qual., 27, 1998, 1170-1177.10.2134/jeq1998.00472425002700050023xSearch in Google Scholar

[13] Fal B., Zmienność odpływu z obszaru Polski w bieżącym stuleciu, Institute of Meteorology and Water Management – notifications, 3, 1993, 3-19.Search in Google Scholar

[14] Fotyma M., Kęsik K., Pietruch Cz., Azot mineralny w glebach Polski, Fertilizers and Fertilization, No. 38, Institute of Soil Science and Plant Cultivation – State Reasearch Institute, Puławy 2010.Search in Google Scholar

[15] Gafur A., Jensen J., Borggaard O., Petersen L., Runoff and losses of soil and nutrients from small watersheds under shifting cultivation (Jhum) in the Chittagong Hill Tracts of Bangladesh, Journal of Hydrology, Vol. 274, 2003, 30-46.10.1016/S0022-1694(02)00351-7Search in Google Scholar

[16] Gaweł E., Rola roślin motylkowych drobnonasiennych w gospodarstwie rolnym, Woda – Środowisko – Obszary Wiejskie, 11, 2011, 73-91.Search in Google Scholar

[17] Gębala J., Orlińska-Woźniak P., Wilk P., Zanieczyszczenia związkami azotu pochodzenia rolniczego wód powierzchniowych w Polsce – wybrane problemy oceny jakości wód, Gospodarka Wodna, 11, 2013.Search in Google Scholar

[18] Gębala J., Method of assessing the impact of agricultural anthropopression on surface water quality on example of the Rega basin, PhD thesis supervising by M. Ostojski, Institute of Meteorology and Water Management – National Research Institute, Warsaw 2015.Search in Google Scholar

[19] Grabińska B., Kuc J., Glińska-Lewczuk K., Zanieczyszczenia obszarowe w zlewniach rolniczych i leśnych – możliwości ograniczania. Wpływ użytkowania zlewni Narwi na zagrożenie wód związkami azotu, 2004, 164.Search in Google Scholar

[20] Gupta H.V., Sorooshian S., Yapo P.O., Status of automatic calibration for hydrologic models: Comparison with multilevel expert calibration, J. Hydrologic Eng., 4(2), 1999, 135-143.10.1061/(ASCE)1084-0699(1999)4:2(135)Search in Google Scholar

[21] HELCOM, Stakeholder Conference on the Baltic Sea Action Plan, Eutrophication in the Baltic Sea, Draft HELCOM Thematic Assessment in 2006, Helsinki 2006.Search in Google Scholar

[22] Hobot A., Banaszak K., Stolarska M., Serafin R., Stachura A., Warunki korzystania z wód zlewni rzeki Redy – Etap 1 – Dynamiczny bilans zasobów wodnych, The Regional Water Management Authority in Gdańsk, Gdańsk 2012.Search in Google Scholar

[23] IUNG 2009, Mapy kategorii glebowych Ministerstwa Rolnictwa i Rozwoju Wsi, Institute of Soil Science and Plant Cultivation – State Reasearch Institute, http://www.susza.iung.pulawy.pl/index.html?str=mapkat (access: 1.06.2015).Search in Google Scholar

[24] Kiryluk A., Rauba M., Zmienność stężenia związków azotu w różnie użytkowanej zlewni rolniczej rzeki Ślina, Woda – Środowisko – Obszary Wiejskie, 9, 2009, 71-86.Search in Google Scholar

[25] Kuźniar A., Twardy S., Kowalczyk A., Przyczyny zmian stężenia azotu i fosforu w wodach powierzchniowych górnej zlewni Sanu (po przekrój w Przemyślu) w latach 1990-2005, Woda – Środowisko – Obszary wiejskie, 8, 2008, 185-196.Search in Google Scholar

[26] Li J., Okin G., Alvarez L., Epstein H., Quantitative effects of vegetation cover on wind erosion and soil nutrient loss in a desert grassland of southern New Mexico, Biogeochemistry, Volume 85, Issue 3, 2007, 317-332.10.1007/s10533-007-9142-ySearch in Google Scholar

[27] Maréchal D., Holman P., Comparison of Hydrologic Simulations using Regionalised and Basin-Calibrated Parameter Sets for three Basins in England, Institute of Water and Environment, Cranfield University, UK, 2004.Search in Google Scholar

[28] MPHP, The Map of Hydrographical Divisions of Poland, Institute of Meteorology and Water Management – National Research Institute, Warszawa 2009.Search in Google Scholar

[29] Moriasi D.N., Arnold J.G., Model evaluation guidelines for systematic quantification of accuracy in watershed simulations, American Society of Agricultural and Biological Engineers, 2007.Search in Google Scholar

[30] Neitsch S.L., Arnold J., Kiniry R., Srinivasan R., Williams J.R., Soil and Water Assessments Tool Input/Output File Documentation, Blackland Research Center Texas Agricultural Experiment Station, 2004.Search in Google Scholar

[31] Neitsch S.L., Arnold J., Kiniry R., Williams J.R., Soil and Water Assessments Tool Theoretical documentation, Blackland Research Center Texas Agricultural Experiment Station, 2005.Search in Google Scholar

[32] Ostojski M.S., Modelowanie procesów odprowadzania do Bałtyku związków biogennych na przykładzie azotu i fosforu ogólnego, Wydawnictwo Naukowe PWN, Warszawa 2012.Search in Google Scholar

[33] Ozga-Zielińska M., Brzeziński J., Hydrologia stosowana, Wydawnictwo Naukowe PWN, Warszawa 1994.Search in Google Scholar

[34] Pietrzak S., Priorytetowe środki zaradcze w zakresie ograniczania strat azotu i fosforu z rolnictwa w aspekcie ochrony jakości wody, Instytut Technologiczno-Przyrodniczy, 2012.Search in Google Scholar

[35] Przywara L., Warunki i możliwości usuwania fosforanów i fosforu ogólnego ze ścieków przemysłowych, Ph.D. desideration, Bielsko-Biała 2006.Search in Google Scholar

[36] Regulation of the Minister of Environment on the forms and manner of monitoring of surface water bodies and groundwater bodies, Journal of Laws, No. 258/1550, 2011.Search in Google Scholar

[37] Regulation of the Minister of the Environment on the classification of surface water bodies and environmental quality standards for priority substances, Journal of Laws, No. 257/1545, 2011.Search in Google Scholar

[38] Report on the state of the environment in Western Pomeranian in years 2006-2007.Search in Google Scholar

[39] Robinson H.T., Leydecker A., Keller A., Melack J.M., Steps towards modeling nutrient export in coastal Californian streams with a Mediterranean climate, Agricultural Water Management, 77, 2005, 144-158.10.1016/j.agwat.2004.09.024Search in Google Scholar

[40] RZGW – The Regional Water Management Authority in Szczecin, Charakterystyka ogólna, 2010, http://www.rzgw.szczecin.pl/ogolna-charakterystyka/index/id/129/print_site/1 (access: 2.06.2015).Search in Google Scholar

[41] Sarma P.B., Delleur J.W., Rao A.R., Comparison of rainfall-runoff models for urban areas, Journal of Hydrology, Volume 18, Issues 3-4, 1973, 329-347.10.1016/0022-1694(73)90056-5Search in Google Scholar

[42] Srinivasan R., Hadley J., Uhlenbrook S., Van Griensven A., Holvoet K., Bauwens W., European SWAT summer school, UNESCO – IHE, Institute for Water Education, 2006.Search in Google Scholar

[43] Srinivasan R., Soil and Water Assessment Tool, Introductory Manual – teaching materials, Texas, 2011.Search in Google Scholar

[44] Sullivan D.M., Hart J.M., Christensen N.W., Nitrogen Uptake and Utilization, A Pacific Northwest Extension Publication, Oregon–Idaho–Washington 1999.Search in Google Scholar

[45] Udawatta R.P., Motavalli P.P., Garrett H.E., Krstansky J.J., Nitrogen losses in runoff from three adjacent agricultural watersheds with claypan soils, Agriculture, Ecosystems & Environment, Elsevier, 2006.10.1016/j.agee.2006.03.002Search in Google Scholar

[46] Warric J.A., Washbum L., Brzezinski M., Siegel D., Nutrient contributions to the Santa Barbara Channel, California, from the ephemeral Santa Clara River, Estuarine Coastal and Shelf Science, 62, 2005, 559-574.10.1016/j.ecss.2004.09.033Search in Google Scholar

[47] Watson C., Mills C., Gross nitrogen transformations in grassland soils as affected by previous management intensity, Soil Biology and Biochemistry, Vol. 30, 6, 1998, 743-753.10.1016/S0038-0717(97)00179-XSearch in Google Scholar

[48] Wilk P., The method of calculating the absorption rate of the river as a tool to evaluate the physico-chemical state of surface water flowing, Ph.D thesis supervising by M. Ostojski, Institute of Meteorology and Water Management – National Research Institute, Warszawa 2015.Search in Google Scholar

[49] Youssef T., Skaggs M., Amatya R.D., Temporal variations and controlling factors of nitrogen export from an artificially drained coastal forest, Environmental Science & Technology, 46(18), 2012, 9956-9963.10.1021/es3011783Search in Google Scholar

[50] Zhang G., Liu G., Wang G., Wang Y., Effects of Vegetation Cover and Rainfall Intensity on Sediment-Bound Nutrient Loss, Size Composition and Volume Fractal Dimension of Sediment Particles, Pedosphere, Vol. 21, 2011, 676-684.10.1016/S1002-0160(11)60170-7Search in Google Scholar

[51] Zwolsman J., Seasonal Variability and Biogeochemistry of Phosphorus in the Scheldt Estuary, south-west Netherlands, Estuarine, Coastal and Shelf Science, Vol. 39, Issue 3, September, 1994, 227-248.10.1006/ecss.1994.1061Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo