1. bookVolume 114 (2017): Issue 8 (August 2017)
Journal Details
License
Format
Journal
eISSN
2353-737X
First Published
20 May 2020
Publication timeframe
1 time per year
Languages
English
access type Open Access

Comparison of Computing Efficiency of Different Hydraulic Vehicle Damper Models

Published Online: 26 May 2020
Volume & Issue: Volume 114 (2017) - Issue 8 (August 2017)
Page range: 207 - 214
Journal Details
License
Format
Journal
eISSN
2353-737X
First Published
20 May 2020
Publication timeframe
1 time per year
Languages
English
Abstract

This paper deals with comparisons of computing efficiency of 20 damper models with functional and hybrid approaches, which can be used to solve typical problems in vehicle dynamics. Efficiency is evaluated based on model accuracy and computing time. The computed results of different damper models are compared to measurements of an actual car damper. Its damping characteristics were measured on a hydraulic damper test rig with three different excitations.

Keywords

[1] Caffarty S., Tomlinson G. R., Characterization of automotive dampers using higher order frequency response functions, Proc. IMechE, Vol. 211, PartD: J. Automobile Engineering, 1997, 181–203.10.1243/0954407971526353Search in Google Scholar

[2] Duym S., Simulation Tools, Modelling and Identification, for an Automotive Shock Absorber in the Context of Vehicle Dynamics, VSD, Vol. 33, 2000, 261–285.10.1076/0042-3114(200004)33:4;1-U;FT261Search in Google Scholar

[3] Dzierżek S., Knapczyk M., Maniowski M., Extending passive dampers functionality for specific ride and handling requirements, Czasopismo Techniczne z. 6–M, Wydawnictwo Politechniki Krakowskiej, 2008, 39–47.Search in Google Scholar

[4] Guzzomi F., et al., Investigation of Damper Valve Dynamics Using Parametric Numerical Methods, Australian Fluid Mechanics Conference, Crown Plaza, Australia, 2007, 1123–1130.Search in Google Scholar

[5] Liberati M., et al., Grey–box Modelling of a Motorcycle Shock absorber, 43rd IEEE Conference on Decision and Control, Atlantis–Bahamas, 2004, 755–760.10.1109/CDC.2004.1428748Search in Google Scholar

[6] Lion A., Loose S., Thermomechanically Coupled Model for Automotive Shock absorbers: Theory, Experiments and Vehicle Simulations on Test Tracks, Vehicle System Dynamics, Vol. 37, no. 4, 2002, 241–261.10.1076/vesd.37.4.241.3528Search in Google Scholar

[7] Lozia Z., Zdanowicz P., Wykorzystanie różnych formalizmów opisu tarcia suchego w modelu ćwiartki samochodu stosowanym do symulacji testu diagn. stanu amortyzatorów, Teka Kom. Motoryzacji, PAN, z. 33–34, Kraków, 2008, 215–222.Search in Google Scholar

[8] Maniowski M., Porównanie efektywności modeli amortyzatorów hydraulicznych, VIII Międzynarodowa Konf. Naukowo–Techn., Problemy Bezpieczeństwa Pojazdów, Kielce–Cedzyna, 2012.Search in Google Scholar

[9] Patel A., Dunne J. F., NARX Neural Network Modelling of Hydraulic Suspension Dampers for Steady–state and Variable Temperature Operation, Vehicle System Dynamics, Vol. 40, no. 5, 2003, 285–328.10.1076/vesd.40.5.285.17911Search in Google Scholar

[10] Ramos J.C., et al., Development of a thermal model for automotive twin–tube shock absorbers, Applied Thermal Engineering, Vol. 25, 2005, 1836–1853.10.1016/j.applthermaleng.2004.11.005Search in Google Scholar

[11] Schiehlen W., Hu B., Spectral simulation and shock absorber identification, Int. Journal of Non–Linear Mechanics, 38, 2003, 161–171.10.1016/S0020-7462(01)00053-1Search in Google Scholar

[12] Van Kasteel R., et al., A new shock absorber model for use in vehicle dynamics studies, Vehicle System Dynamics, Vol. 43, no 9, 2005, 913–631.10.1080/0042311042000266720Search in Google Scholar

[13] Zach C., et al., On the performance of rheological shock absorber models in full vehicle simulation, Vehicle System Dynamics, Vol.45, 2007, 981–999.10.1080/00423110601151968Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo