1. bookVolume 114 (2017): Issue 6 (June 2017)
Journal Details
License
Format
Journal
eISSN
2353-737X
First Published
20 May 2020
Publication timeframe
1 time per year
Languages
English
access type Open Access

The use of Waste Heat from Flue Gas in the System of Regeneration of Steam Boiler Supply Water

Published Online: 26 May 2020
Volume & Issue: Volume 114 (2017) - Issue 6 (June 2017)
Page range: 209 - 217
Journal Details
License
Format
Journal
eISSN
2353-737X
First Published
20 May 2020
Publication timeframe
1 time per year
Languages
English
Abstract

This study presents an analysis of the process of the use of waste heat from flue gas for the purposes of heating water in the regeneration system of a steam power unit fuelled with brown coal with a power of 900 MWe. Preparation of flue gas and its initial moistening (increasing the dew point temperature) followed by cooling (condensation of the moisture contained in the flue gas) can ensure intensive heat exchange in the process of heat recovery. Replacing a first regeneration exchanger with the heat recovered from flue gas allows for an increase in steam power unit efficiency by 0.22% and limitation of CO2 emissions by 22,810 t/year, while reducing the fuel demand by 26,727 tonnes per annum. Depending on the prices of CO2 emissions permits and prices of brown coal, the proposed heat recovery allows for saving from €500,000 to €1,000,000 per year.

Keywords

[1] Panowski M., Klajny R., Analiza termodynamiczna wstępnego podsuszania paliwa, Mat. Konf. XX Jubileuszowy Zjazd Termodynamików, ISBN 978-83-7493-407-7, 2008, 189–193.Search in Google Scholar

[2] Sławiński K., Knaś K., Gandor M., Nowak W., Suszenie węgla brunatnego w energetyce – możliwości zastosowania młyna elektromagnetycznego, Zeszyty Naukowe Politechniki Rzeszowskiej – seria Mechanika, Vol. 86 (3/14), 2014, 2300–5211.10.7862/rm.2014.50Search in Google Scholar

[3] Pawlak-Kruczek H., Plutecki Z., Suszenie węgla niskogatunkowego, Wydawnictwo „Nowa Energia”, 2014.Search in Google Scholar

[4] Lichota J., Plutecki Z., Suszenie węgla w elektrowniach, Rynek Energii, 2007, No. 6, 36–41.Search in Google Scholar

[5] B&W, Steam: Its Generation and Use, The Babcock & Wilcox Company, New York 2007.Search in Google Scholar

[6] Spliethoff H., Power Generation from Solid Fuels, Springer-Verlag Berlin Heidelberg, 2010.10.1007/978-3-642-02856-4Search in Google Scholar

[7] Chmielniak T., Łukowicz H., Modelowanie i optymalizacja węglowych bloków energetycznych z wychwytem CO2, Wydawnictwo Politechniki Śląskiej, Gliwice 2015.Search in Google Scholar

[8] Szulc P., Tietze T., Odzysk i energetyczne wykorzystanie gazów wylotowych pochodzą-cych z bloków energetycznych elektrowni węglowych, Materiały VI Konferencji Naukowo--Technicznej „Energetyka gazowa 2016”, Vol. II, Wydawnictwo Instytutu Techniki Cieplnej, Gliwice 2016.Search in Google Scholar

[9] Incropera F., DeWitt D., Fundamentals of heat and mass transfer, 4th edition. John Wley and Sons, 1996.Search in Google Scholar

[10] Cao E., Heat transfer in process engineering, McGraw-Hill, 2009.Search in Google Scholar

[11] Hobler T., Ruch ciepła i wymienniki, WNT, Warszawa 1979.Search in Google Scholar

[12] Bohdal T., Matysko R., Analiza kondensacji pary wodnej na rurze pionowej, Ciepłownictwo, Ogrzewnictwo, Wentylacja, No. 7–8/2004, 35–41.Search in Google Scholar

[13] Broomley L., Heat transfer in condensation – effect of heat capacity of condensate, Ind. Eng. Chem. 44, 1952, 2966–2969.10.1021/ie50516a052Search in Google Scholar

[14] Siddique M., Golay M., Kazimi M., Local heat transfer coefficients for forced-convection condensation of steam in a vertical tube in the presence of a noncondensable gas, Nuclear Technology 102, 1993, 386–402.10.13182/NT93-A17037Search in Google Scholar

[15] Colburn A., Hougen O., Design of cooler condensers for mixtures of vapors with noncondensing gases, Industrial and Engineering Chemistry, Vol. 26, 1934, 1178–1182.10.1021/ie50299a011Search in Google Scholar

[16] Heaphy J.P., Carbonara J., Litzke W., Butcher T.A., Condensing Economizers For Thermal Efficiency Improvements And Emissions Control, U.S. Department of Energy No. DE-AC02-76CBOO016, 1993.Search in Google Scholar

[17] Sparrow E., Lin S., Condensation heat transfer in presence of a noncondensable gas, Journal of Heat Transfer, 1964, 430–436.10.1115/1.3688714Search in Google Scholar

[18] Wójs K., Szulc P., Tietze T., Sitka A., Concept of a system for waste heat recovery from flue gases in coal-fired power plant, Journal of Energy Science, Vol. 1, No. 1, Wrocław University of Technology 2010, 191–200.Search in Google Scholar

[19] Chen Q., Finney K., Li H., Zhang X., Zhou J., Sharifi V., Swithenbank J., Condensing boilers applications in the process industry, Applied Energy, No. 89, 2012, 22–36.10.1016/j.apenergy.2010.11.020Search in Google Scholar

[20] Wójs K., Odzysk i zagospodarowanie niskotemperaturowego ciepła odpadowego ze spalin, Wydawnictwo Naukowe PWN SA, Warszawa 2015.Search in Google Scholar

[21] http://www.radscan.se (access: 03.07.2016).Search in Google Scholar

[22] Shi X., Che D., Agnew B., Gao J., An investigation of the performance of compact heat exchanger for latent heat recovery from exhaust flue gases, Int. J. Heat Mass Transfer, 54, 2011, 606–615.10.1016/j.ijheatmasstransfer.2010.09.009Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo