1. bookVolume 114 (2017): Issue 4 (April 2017)
Journal Details
First Published
20 May 2020
Publication timeframe
1 time per year
access type Open Access

Generation of homo- and heterogeneous microcapsules and their application

Published Online: 23 May 2020
Volume & Issue: Volume 114 (2017) - Issue 4 (April 2017)
Page range: 197 - 208
Journal Details
First Published
20 May 2020
Publication timeframe
1 time per year

Microencapsulation is defined as a process during which the whole envelopment with (bio)catalysts, substrates etc. is included into hydrogel and/or surrounded by a porous polymeric membrane. However, the production of homogeneous, narrow size, distributed capsules is quite troublesome. The main problem is the way of obtaining a large number of capsules with a precisely predefined size. It is possible due to a device called an encapsulator. This equipment allows to produce homogeneous beads and core-shell systems with a predefined size in the range from 400 µm to 1600 µm, which is possible because of special nozzles with different diameters. There are a lot of microcapsule applications. In this paper, we would like to present the construction, principles of operation and selected applications of microencapsulation devices using the example of the BÜCHI–B390 encapsulator.


[1] López A.F., Deladino L., Alba S.N., Miriam N.M., Encapsulación de compuestos bioactivos con alginatos para la industria de alimentos, limentech, Ciencia y Tecnología Alimentaria, 10(1), 2011.Search in Google Scholar

[2] Whelehan M., Marison I.W., Microencapsulation using vibrating technology, Journal of microencapsulation, 28(8), 2011, 669–688.10.3109/02652048.2011.586068Search in Google Scholar

[3] Aftabrouchad C., Doelker E.S.T.P., Méthodes de préparation des microparticules biodégradables chargées en principes actifs hydrosolubles, STP pharma sciences, 2(5), 1992, 365–380.Search in Google Scholar

[4] Thomasin C., Johansen P., Alder R., Bemsel R., Hottinger G., Altorfer H., Wright A.D., A Contribution to Overcoming the Problem of Residual Solvents in Biodegradable Microspheres, Prepared by. Eur. J. Pharm. Biopharm, 42, 1996, 1.Search in Google Scholar

[5] Johansen P., Merkle H. P., Gander B. Technological considerations related to the up-scaling of protein microencapsulation by spray-drying, European Journal of Pharmaceutics and Biopharmaceutics, 50(3), 2000, 413–417.10.1016/S0939-6411(00)00123-5Search in Google Scholar

[6] Rayleigh L., Philosophical Magazine, Series 5, 1882, 184–186.10.1080/14786448208628425Search in Google Scholar

[7] Yeo Y., Baek N., & Park K., Microencapsulation methods for delivery of protein drugs, Biotechnology and Bioprocess Engineering, 6(4), 2001, 213–230.10.1007/BF02931982Search in Google Scholar

[8] Vemmer M., Patel A.V., Review of encapsulation methods suitable for microbial biological control agents, Biological Control, 67(3), 2013, 380–389.10.1016/j.biocontrol.2013.09.003Search in Google Scholar

[9] Whelehan M., Marison I.W., Microencapsulation using vibrating technology, Journal of microencapsulation, 28(8), 2011, 669–688.10.3109/02652048.2011.586068Search in Google Scholar

[10] BUCHI Labortechnik AG. Encapsulators B-390/B-395 Pro, Technical data sheet, http://www.buchi.com/en/content/spray-drying-encapsulation-solutions (access: July 2016).Search in Google Scholar

[11] Serp D., Cantana E., Heinzen C., Von Stockar U., Marison I.W., Characterization of an encapsulation device for the production of monodisperse alginate beads for cell immobilization, Biotechnology and bioengineering, 70(1), 2000, 41-53.10.1002/1097-0290(20001005)70:1<41::AID-BIT6>3.0.CO;2-USearch in Google Scholar

[12] Heinzen C., Berger A., Marison I., Use of vibration technology for jet break-up for encapsulation of cells and liquids in monodisperse microcapsules, In Fundamentals of cell immobilisation biotechnology Springer Netherland 2004, 257–275.10.1007/978-94-017-1638-3_14Search in Google Scholar

[13] Marison I., Peters A., Heinzen C., Liquid Core Caspules for Applications in Biotechnology. In Fundamentals of cell immobilisation biotechnology 2004, Springer Netherlands 2004, 185–204.10.1007/978-94-017-1638-3_10Search in Google Scholar

[14] Brandenberger H., Nüssli D., Piech V., Widmer F., Monodisperse particle production: A method to prevent drop coalescence using electrostatic forces, Journal of electrostatics, 45(3), 1999, 227–238.10.1016/S0304-3886(98)00052-7Search in Google Scholar

[15] Kikuchi A., Kawabuchi M., Sugihara M., Sakurai Y., Okano T., Pulsed dextran release from calcium-alginate gel beads, Journal of Controlled Release, 47(1), 1997, 21–29.10.1016/S0168-3659(96)01612-4Search in Google Scholar

[16] Morris E.R., Rees D.A., Thom D., Boyd J., Chiroptical and stoichiometric evidence of a specific, primary dimerisation process in alginate gelation, Carbohydrate research, 66(1), 1978, 145–154.10.1016/S0008-6215(00)83247-4Search in Google Scholar

[17] Lee B.J., Min G.H., Oral controlled release of melatonin using polymer-reinforced and coated alginate beads, International journal of pharmaceutics, 144(1), 1996, 37–46.10.1016/S0378-5173(96)04723-0Search in Google Scholar

[18] Kamath K.R., Park K., Biodegradable hydrogels in drug delivery, Advanced Drug Delivery Reviews, 11(1), 1993, 59–84.10.1016/0169-409X(93)90027-2Search in Google Scholar

[19] González-Rodrıguez M.L., Holgado M.A., Sanchez-Lafuente C., Rabasco A.M., Fini A., Alginate/chitosan particulate systems for sodium diclofenac release. International Journal of Pharmaceutics, 232(1), 2002, 225–234.10.1016/S0378-5173(01)00915-2Search in Google Scholar

[20] Wang L., Shelton R.M., Cooper P.R., Lawson M., Triffitt J.T., Barralet J.E., Evaluation of sodium alginate for bone marrow cell tissue engineering, Biomaterials, 24(20), 2003, 3475–3481.10.1016/S0142-9612(03)00167-4Search in Google Scholar

[21] Yoo S.H., Song Y.B., Chang P.S., Lee H.G., Microencapsulation of α-tocopherol using sodium alginate and its controlled release properties, International journal of biological macromolecules, 38(1), 2006, 25–30.10.1016/j.ijbiomac.2005.12.01316417917Search in Google Scholar

[22] Lertsutthiwong P., Noomun K., Jongaroonngamsang N., Rojsitthisak P., Nimmannit U., Preparation of alginate nanocapsules containing turmeric oil, Carbohydrate Polymers, 74(2), 2008, 209–214.10.1016/j.carbpol.2008.02.009Search in Google Scholar

[23] Zhu G.Y., Xiao Z.B., Zhou R.J., Yi F.P., Fragrance and flavor microencapsulation technology, In Advanced Materials Research, Vol. 535, 2012, 440–445. Trans Tech Publications.10.4028/www.scientific.net/AMR.535-537.440Search in Google Scholar

[24] Craigie J.S., Cell walls. In biology of the red algae, K.M. Cole and R.G., Cambrige University Press, 1990, 221–257.Search in Google Scholar

[25] Murano E., Use of natural polysaccharides in the microencapsulation techniques, Journal of Applied Ichthyology, 14(3–4), 1998, 245–249.10.1111/j.1439-0426.1998.tb00650.xSearch in Google Scholar

[26] Rochas C., Rinaudo M., Mechanism of gel formation in κ-carrageenan, Biopolymers, 23(4), 1984, 735–745.10.1002/bip.360230412Search in Google Scholar

[27] Dima C., Cotârlet M., Alexe P., Dima S., Microencapsulation of essential oil of pimento [Pimenta dioica (L) Merr.] by chitosan/k-carrageenan complex coacervation method, Innovative Food Science & Emerging Technologies, 22, 2014, 203–211.10.1016/j.ifset.2013.12.020Search in Google Scholar

[28] Anal A.K., Singh H., Recent advances in microencapsulation of probiotics for industrial applications and targeted delivery, Trends in Food Science & Technology, 18(5), 2007, 240–251.10.1016/j.tifs.2007.01.004Search in Google Scholar

[29] Shi L.E., Li Z.H., Zhang Z.L., Zhang T.T., Yu W.M., Zhou M.L., Tang Z.X., Encapsulation of Lactobacillus bulgaricus in carrageenan-locust bean gum coated milk microspheres with double layer structure, LWT-Food Science and Technology, 54.1, 2013, 147–151.10.1016/j.lwt.2013.05.027Search in Google Scholar

[30] Peniche C., Argüelles-Monal W., Peniche H., Acosta N., Chitosan: an attractive biocompatible polymer for microencapsulation, Macromolecular Bioscience, 3(10), 2003, 511–520.10.1002/mabi.200300019Search in Google Scholar

[31] Muzzarelli R.A.A., Muzzarelli C., Chitosan chemistry: relevance to the biomedical sciences, In Polysaccharides I, 2005, 151–209, Springer Berlin Heidelberg.10.1007/b136820Search in Google Scholar

[32] Sugano M., Fujikawa T., Hiratsuji Y., Hasegawa Y., Hypocholesterolemic effects of chitosan in cholesterol-fed rats, Nutr. Rep. Int, 18, 1978, 531–537.Search in Google Scholar

[33] Tokura S., Ueno K., Miyazaki S., Nishi N., Molecular weight dependent antimicrobial activity by chitosan, In New Macromolecular Architecture and Functions, 1996, 199–207, Springer Berlin Heidelberg.10.1007/978-3-642-80289-8_21Search in Google Scholar

[34] Hirano S., Tokura S., Proceedings of the Second International Conference on Chitin/ Chitosan. Japanese Soc. Chitin, Tottori Japan 1982.Search in Google Scholar

[35] Peniche H., Osorio A., Acosta N., De La Campa A., Peniche C., Preparation and characterization of superparamagnetic chitosan microspheres: Application as a support for the immobilization of tyrosinase, Journal of applied polymer science, 98(2), 2005, 651–657.10.1002/app.22086Search in Google Scholar

[36] Shibasaki K., Matsukubo T., Shugihara N., Tashiro E., Tanabe Y., Takaesu Y., Kokku Eisei Gakai Zasshi, 1988, 38.Search in Google Scholar

[37] Şenel S., Kremer M.J., Kaş S., Wertz P.W., Hıncal A.A., Squier C.A., Enhancing effect of chitosan on peptide drug delivery across buccal mucosa, Biomaterials, 21(20), 2000, 2067–2071.10.1016/S0142-9612(00)00134-4Search in Google Scholar

[38] Pajunen E., Grönqvist A., Ranta B., Immobilized yeast reactor application in continuous secondary fermentation in industrial scale operation, In Proceedings of the European Brewing Convention Congress, Lisbon 1991, 361–368.Search in Google Scholar

[39] Lommi H., Immobilized yeast for maturation and alcohol-free beer, Brew. Dist. Int, 5, 1990, 22–23.Search in Google Scholar

[40] Pilkington P.H., Margaritis A., Mensour N.A., Russell I., Fundamentals of immobilised yeast cells for continuous beer fermentation: a review, Journal of the Institute of Brewing, 104(1), 1998, 19–31.10.1002/j.2050-0416.1998.tb00970.xSearch in Google Scholar

[41] Hayes S.A., Power J., Ryder D.S., Physiology of immobilised cells and the application to brewing, Brew. Dig. 66 (11), 1991, 28–33.Search in Google Scholar

[42] Nedovic V.A., Obradovic B., Leskosek-Cukalovic I., Vunjak-Novakovic G., Immobilized yeast bioreactor systems for brewing—recent achievements, In Engineering and manufacturing for biotechnology, 2001, 277–292, Springer Netherlands.10.1007/0-306-46889-1_18Search in Google Scholar

[43] Nedović V.A., Obradović B., Leskošek-Čukalović I., Trifunović O., Pešić R., Bugarski B., Electrostatic generation of alginate microbeads loaded with brewing yeast, Process Biochemistry, 37(1), 2001, 17–22.10.1016/S0032-9592(01)00172-8Search in Google Scholar

[44] Wyss A., Von Stockar U., Marison I.W., Production and characterization of liquid-core capsules made from cross-linked acrylamide copolymers for biotechnological applications, Biotechnology and bioengineering, 86(5), 2004, 563–572.10.1002/bit.20050Search in Google Scholar

[45] Stark D., Münch T., Sonnleitner B., Marison I.W., Stockar U.V., Extractive Bioconversion of 2-Phenylethanol from l-Phenylalanine by Saccharomycescerevisiae. Biotechnology Progress, 18(3), 2002, 514–523.10.1021/bp020006nSearch in Google Scholar

[46] Ouwehand A.C., Salminen S.J., The health effects of cultured milk products with viable and non-viable bacteria, International Dairy Journal, 8(9), 1998, 749–758.10.1016/S0958-6946(98)00114-9Search in Google Scholar

[47] Chandramouli V., Kailasapathy K., Peiris P., Jones M., An improved method of microencapsulation and its evaluation to protect Lactobacillus spp. in simulated gastric conditions, Journal of microbiological methods, 56(1), 2004, 27–35.10.1016/j.mimet.2003.09.00214706748Search in Google Scholar

[48] McSweeney P.L., Biochemistry of cheese ripening. International Journal of Dairy Technology, 57(2-3), 2004, 127–144.10.1111/j.1471-0307.2004.00147.xSearch in Google Scholar

[49] Kailasapathy K., Lam S.H., Application of encapsulated enzymes to accelerate cheese ripening. International Dairy Journal, 15(6), 2005, 929–939.10.1016/j.idairyj.2004.11.006Search in Google Scholar

[50] Anjani K., Kailasapathy K., Phillips M., Microencapsulation of enzymes for potential application in acceleration of cheese ripening, International Dairy Journal, 17(1), 2007, 79–86.10.1016/j.idairyj.2006.01.005Search in Google Scholar

[51] Wang W., Waterhouse G.I., Sun-Waterhouse D., Co-extrusion encapsulation of canola oil with alginate: effect of quercetin addition to oil core and pectin addition to alginate shell on oil stability, Food research international, 54(1), 2013, 837–851.10.1016/j.foodres.2013.08.038Search in Google Scholar

[52] Sun-Waterhouse D., Penin-Peyta L., Wadhwa S.S., Waterhouse G.I., Storage stability of phenolic-fortified avocado oil encapsulated using different polymer formulations and co-extrusion technology, Food and Bioprocess Technology, 5(8), 2012, 3090–3102.10.1007/s11947-011-0591-xSearch in Google Scholar

[53] Choe E., Effects and mechanisms of minor compounds in oil on lipid oxidation, Food lipids: chemistry, nutrition, and biotechnology, 2008, 449–474.10.1201/9781420046649.ch17Search in Google Scholar

[54] Neethirajan S., Jayas D.S., Nanotechnology for the food and bioprocessing industries. Food and bioprocess technology, 4(1), 2011, 39–47.10.1007/s11947-010-0328-2708933432215165Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo