1. bookVolume 114 (2017): Issue 3 (March 2017)
Journal Details
License
Format
Journal
eISSN
2353-737X
First Published
20 May 2020
Publication timeframe
1 time per year
Languages
English
access type Open Access

Spectroscopic studies of dual fluorescence effects in a selected 1,3,4-thiadiazole derivative in organic solvents and aqueous solutions

Published Online: 23 May 2020
Volume & Issue: Volume 114 (2017) - Issue 3 (March 2017)
Page range: 47 - 61
Journal Details
License
Format
Journal
eISSN
2353-737X
First Published
20 May 2020
Publication timeframe
1 time per year
Languages
English
Abstract

Spectroscopic studies of the fluorescence emission of selected 1,3,4-thiadiazoles in organic solvents and an aqueous solution were carried out. An interesting effect of pH-induced dual fluorescence was observed in the aqueous solution. The use of organic solvents resulted either in a single fluorescence maximum, double fluorescence (two well-resolved emission bands), or the dual fluorescence effect. The results obtained suggest that the fluorescence emission effects in 1,3,4-thiadiazoles are associated with both the conformational isomerism and the chromophore aggregation phenomena.

Keywords

[1] Jain A.K., Sharma S., Vaidya A., Ravichandran V., Agrawal R.K., 1, 3, 4-Thiadiazole and its Derivatives: A Review on Recent Progress in Biological Activities, Chemical Biology & Drug Design, 2013, 557–576.10.1111/cbdd.1212523452185Search in Google Scholar

[2] Juszczak M., Matysiak J., Brzana W., Niewiadomy A., Rzeski W., Evaluation of the antiproliferative activity of 2-(monohalogenophenylamino)-5-(2, 4-dihydroxyphenyl)-1, 3, 4-thiadiazoles, Arzneimittelforschung, 2008, 353–357.10.1055/s-0031-129651918751502Search in Google Scholar

[3] Juszczak M., Matysiak J., Szeliga M., Pożarowski P., Niewiadomy A., Albrecht J., Rzeski W., 2-Amino-1, 3, 4-thiadiazole derivative (FABT) inhibits the extracellular signal-regulated kinase pathway and induces cell cycle arrest in human non-small lung carcinoma cells, Bioorganic & medicinal chemistry letters, 2012, 5466–5469.10.1016/j.bmcl.2012.07.03622877634Search in Google Scholar

[4] Noolvi M.N., Patel H.M., Kamboj S., Cameotra S.S., Synthesis and antimicrobial evaluation of novel 1, 3, 4-thiadiazole derivatives of 2-(4-formyl-2-methoxyphenoxy) acetic acid, Arabian Journal of Chemistry, 2012.Search in Google Scholar

[5] Supurana C.T., Complexes with biologically active ligands. Part 9 Metal complexes of 5-benzoylamino-and 5-(3-nitrobenzoyl-amino)-i, 3, 4-thiadiazole-2-sulfonamide as carbonic anhydrase inhibitors, 1997.10.1155/MBD.1997.1236503618475759Search in Google Scholar

[6] Turan N., Topçu M.F., Ergin Z., Sandal S., Tuzcu M., Akpolat N., Yılmaz B., Sekerci M., Karatepe M., Pro-oxidant and antiproliferative effects of the 1, 3, 4-thiadiazole–based Schiff base and its metal complexes, Drug and Chemical Toxicology, 2011, 369–378.10.3109/01480545.2011.56417721714772Search in Google Scholar

[7] Chabner B.A., Roberts T.G., Chemotherapy and the war on cancer, Nature Reviews Cancer, 2005, 65–72.10.1038/nrc152915630416Search in Google Scholar

[8] Rajak H., Deshmukh R., Aggarwal N., Kashaw S., Kharya M.D., Mishra P., Synthesis of Novel 2, 5-Disubstituted 1, 3, 4-Thiadiazoles for Their Potential Anticonvulsant Activity: Pharmacophoric Model Studies, Archiv der Pharmazie, 2009, 453–461.10.1002/ardp.20080021319565600Search in Google Scholar

[9] Bhongade B.A., Talath S., Gadad R.A., Gadad A.K., Biological activities of imidazo [2, 1-b][1, 3, 4] thiadiazole derivatives: A review, Journal of Saudi Chemical Society, 2013.Search in Google Scholar

[10] Li Y., Geng J., Liu Y., Yu S., Zhao G., Thiadiazole a Promising Structure in Medicinal Chemistry, ChemMedChem, 2013, 27–41.10.1002/cmdc.20120035523208773Search in Google Scholar

[11] Matysiak J., Nasulewicz A., Pełczyńska M., Świtalska M., Jaroszewicz I., Opolski A., Synthesis and antiproliferative activity of some 5-substituted 2-(2, 4-dihydroxyphenyl)-1, 3, 4-thiadiazoles, European Journal of Medicinal Chemistry, 2006, 475–482.10.1016/j.ejmech.2005.12.00716517026Search in Google Scholar

[12] Carstensen J., Solid-state chemistry of drugs. By Stephen R. Byrn, Academic Press, 111 Fifth Avenue, Pharmaceutical Sciences, New York 1984, 573–573.10.1002/jps.2600730441Search in Google Scholar

[13] Cressier D., Prouillac C., Hernandez P., Amourette C., Diserbo M., Lion C., Rima G., Synthesis, antioxidant properties and radioprotective effects of new benzothiazoles and thiadiazoles, Bioorganic & Medicinal Chemistry, 2009, 5275–5284.10.1016/j.bmc.2009.05.03919502068Search in Google Scholar

[14] Gagoś M., Matwijczuk A., Kamiński D., Niewiadomy A., Kowalski R., Karwasz G.P., Spectroscopic studies of intramolecular proton transfer in 2-(4-fluorophenylamino)-5-(2, 4-dihydroxybenzeno)-1, 3, 4-thiadiazole, Journal of Fluorescence, 2011, 1–10.10.1007/s10895-010-0682-5303218120535632Search in Google Scholar

[15] Matwijczuk A., Górecki A., Kamiński D., Myśliwa-Kurdziel B., Fiedor L., Niewiadomy A., Karwasz G.P., Gagoś M., Influence of Solvent Polarizability on the Keto-Enol Equilibrium in 4-[5-(naphthalen-1-ylmethyl)-1, 3, 4-thiadiazol-2-yl] benzene-1, 3-diol, Journal of Fluorescence, 2015, 1867–1874.10.1007/s10895-015-1679-x26438659Search in Google Scholar

[16] Hoser A.A., Kamiński D.M., Matwijczuk A., Niewiadomy A., Gagoś M., Woźniak K., On polymorphism of 2-(4-fluorophenylamino)-5-(2, 4-dihydroxybenzeno)-1, 3, 4-thiadiazole (FABT) DMSO solvates, CrystEngComm, 2013, 1978–1988.10.1039/c3ce26778dSearch in Google Scholar

[17] Kamiński D.M., Hoser A.A., Gagoś M., Matwijczuk A., Arczewska M., Niewiadomy A., Woźniak K., Solvatomorphism of 2-(4-Fluorophenylamino)-5-(2, 4-dihydroxybenzeno)-1, 3, 4-thiadiazole Chloride, Crystal Growth & Design, 2010, 3480–3488.10.1021/cg1003319Search in Google Scholar

[18] Kamiński D.M., Matwijczuk A., Pociecha D., Górecka E., Niewiadomy A., Dmowska M., Gagoś M., Effect of 2-(4-fluorophenylamino)-5-(2, 4-dihydroxyphenyl)-1, 3, 4-thiadiazole on the molecular organisation and structural properties of the DPPC lipid multibilayers, Biochimica et Biophysica Acta (BBA)-Biomembranes, 2012, 2850–2859.10.1016/j.bbamem.2012.07.01322835906Search in Google Scholar

[19] Matwijczuk A., Kaminski D., Górecki A., Ludwiczuk A., Niewiadomy A., Mackowski S., Gagoś M., Spectroscopic Studies of Dual Fluorescence in 2-((4-Fluorophenyl) amino)-5-(2, 4-dihydroxybenzeno)-1, 3, 4-thiadiazole, The Journal of Physical Chemistry A, 2015, 10791–10805.10.1021/acs.jpca.5b0647526465381Search in Google Scholar

[20] Karcz D., Matwijczuk A., Boroń B., Creaven B., Fiedor L., Niewiadomy A., Gagoś M., Isolation and spectroscopic characterization of Zn(II), Cu(II), and Pd(II) complexes of 1,3,4-thiadiazole-derived ligand, Journal of Molecular Structure, 2016.10.1016/j.molstruc.2016.08.042Search in Google Scholar

[21] Skrzypek A., Matysiak J., Niewiadomy A., Bajda M., Szymański P., Synthesis and biological evaluation of 1,3,4-thiadiazole analogues as novel AChE and BuChE inhibitors, Eur J Med Chem, 2013, 311–319.10.1016/j.ejmech.2012.12.06023376249Search in Google Scholar

[22] Andersson P.O., Bachilo S.M., Chen R.-L., Gillbro T., Solvent and temperature effects on dual fluorescence in a series of carotenes. Energy gap dependence of the internal conversion rate, The Journal of Physical Chemistry, 99 1995, 16199–16209.10.1021/j100044a002Search in Google Scholar

[23] Prabhu A.A.M., Sankaranarayanan R., Venkatesh G., Rajendiran N., Dual fluorescence of fast blue RR and fast violet B: effects of solvents and cyclodextrin complexation, The Journal of Physical Chemistry B, 2012, 9061–9074.10.1021/jp302162gSearch in Google Scholar

[24] Kobayashi T., Futakami M., Kajimoto O., 4-(N, N-Dimethylamino) benzonitrile solvated by a polar molecule: Structural demand for charge-transfer state formation, Chemical Physics Letters, 1986, 63–66.10.1016/0009-2614(86)80426-2Search in Google Scholar

[25] Rettig W., Charge separation in excited states of decoupled systems—TICT compounds and implications regarding the development of new laser dyes and the primary process of vision and photosynthesis, Angewandte Chemie International Edition in English, 1986, 971–988.10.1002/anie.198609711Search in Google Scholar

[26] Grabowski Z.R., Rotkiewicz K., Siemiarczuk A., Cowley D., Baumann W., Twisted intra-molecular charge-transfer states (TICT)-new class of excited-states with a full charge separation, Nouveau Journal De Chimie-New Journal of Chemistry, 1979, 443–454.Search in Google Scholar

[27] Zachariasse K.A., Comment on “Pseudo-Jahn–Teller and TICT-models: a photophysical comparison of meta-and para-DMABN derivatives” [Chem. Phys. Lett. 305 (1999) 8]: The PICT model for dual fluorescence of aminobenzonitriles, 2000, 8–13.Search in Google Scholar

[28] Wei X., Yang X., Feng Y., Ning P., Yu H., Zhu M., Xi X., Guo Q., Meng X., A TICT based two-photon fluorescent probe for cysteine and homocysteine in living cells, Sensors and Actuators B: Chemical, 2016, 285–292.10.1016/j.snb.2016.03.027Search in Google Scholar

[29] Ravi M., Soujanya T., Samanta A., Radhakrishnan T., Excited-state dipole moments of some Coumarin dyes from a solvatochromic method using the solvent polarity parameter, ENT, J. Chem. Soc., Faraday Trans., 1995, 2739–2742.10.1039/ft9959102739Search in Google Scholar

[30] Zhao G.-J., Han K.-L., pH-Controlled twisted intramolecular charge transfer (TICT) excited state via changing the charge transfer direction, Physical Chemistry Chemical Physics, 2010, 8914–8918.10.1039/b924549a20556292Search in Google Scholar

[31] Sytnik A., Kasha M., Excited-state intramolecular proton transfer as a fluorescence probe for protein binding-site static polarity, Proceedings of the National Academy of Sciences, 1994, 8627–8630.10.1073/pnas.91.18.8627446598078934Search in Google Scholar

[32] Zhao J., Ji S., Chen Y., Guo H., Yang P., Excited state intramolecular proton transfer (ESIPT): from principal photophysics to the development of new chromophores and applications in fluorescent molecular probes and luminescent materials, Physical Chemistry Chemical Physics, 2012, 8803–8817.10.1039/C2CP23144A22193300Search in Google Scholar

[33] Klymchenko A.S., Demchenko A.P., Multiparametric probing of intermolecular interactions with fluorescent dye exhibiting excited state intramolecular proton transfer, Physical Chemistry Chemical Physics, 2003, 461–468.10.1039/b210352dSearch in Google Scholar

[34] Demchenko A.P., Tang K.-C., Chou P.-T., Excited-state proton coupled charge transfer modulated by molecular structure and media polarization, Chemical Society Reviews, 2013, 1379–1408.10.1039/C2CS35195ASearch in Google Scholar

[35] Pasternack R.F., Collings P.J., Resonance light scattering: a new technique for studying chromophore aggregation, Science, 1995, 935.10.1126/science.7638615Search in Google Scholar

[36] Parkash J., Robblee J.H., Agnew J., Gibbs E., Collings P., Pasternack R.F., de Paula J.C., Depolarized resonance light scattering by porphyrin and chlorophyll a aggregates, Biophysical journal, 1998, 2089–2099.10.1016/S0006-3495(98)77916-0Search in Google Scholar

[37] Binder H., Gutberlet T., Anikin A., Klose G., Hydration of the dienic lipid dioctadecadienoylphosphatidylcholine in the lamellar phase–an infrared linear dichroism and x-ray study on headgroup orientation, water ordering, and bilayer dimensions, Biophysical Journal, 1998, 1908–1923.10.1016/S0006-3495(98)77900-7Search in Google Scholar

[38] Kasha M., Rawls H., Ashraf El-Bayoumi M., The exciton model in molecular spectroscopy, Pure and Applied Chemistry, 1965, 371–392.10.1351/pac196511030371Search in Google Scholar

[39] Kaminski D., Matwijczuk A., Hoser A.A., Niewiadomy A., Woźniak K., Gagoś M., Characteristics of 2-methylamino-5-(2.4 dihydroxybenzene)-1,3,4-thiadiazole chloride, in: Science and Industry – Spectroscopic studies in practice new challenges and potentials, UMCS – Maria Curie-Skłodowska University, Lublin 2011.10.1021/cg1003319Search in Google Scholar

[40] Matwijczuk A., Kluczyk D., Górecki A., Niewiadomy A., Gagoś M., Solvent Effects on Molecular Aggregation in 4-(5-Heptyl-1,3,4-thiadiazol-2-yl)benzene-1,3-diol and 4-(5-Methyl-1,3,4-thiadiazol-2-yl)benzene-1,3-diol, Journal of Physical Chemistry B, 2016, 7958–7969.10.1021/acs.jpcb.6b0632327454065Search in Google Scholar

[41] Kluczyk D., Matwijczuk A., Górecki A., Karpińska M.M., Szymanek M., Niewiadomy A., Gagoś M., Molecular Organisation of Dipalmitoylphosphatidylcholine Bilayers Containing Bioactive Compounds 4-(5-heptyl-1,3,4-thiadiazol-2-yl) benzene-1,3-diol and 4-(5-methyl-1,3,4-thiadiazol-2-yl) benzene-1,3-diol, Journal of Physical Chemistry B, 2016, 12047–12063.10.1021/acs.jpcb.6b0937127798830Search in Google Scholar

[42] Matwijczuk A., Karcz D., Walkowiak R., Matwijczuk A., Niewiadomy A., Wybraniec S., Karwasz G.P., Gagoś M., Keto-enol tautomerism of 2-(4-fluorophenyl)-5-(2,4-dihydroxyphenyl)-1,3,4-thiadiazole. Spectroscopic studies Tautomeria keto-enolowa w 2-(4-fluorofenylo)-5-(2,4-dihydroksyfenylo)-1,3,4-tiadiazolu. Badania spektroskopowe, Przemysł Chemiczny 1, 2016, 40–44.10.15199/62.2016.10.7Search in Google Scholar

[43] Matwijczuk A.P., Karcz D., Walkowiak R. J., Furso J., Gładyszewska B., Wybraniec S., Niewiadomy A., Karwasz G.P. and Gagoś M., Effect of Solvent Polarizability on the Keto/Enol Equilibrium of Selected Bioactive Molecules from the 1,3,4-Thiadiazole Group with a 2,4-Hydroxyphenyl Function, 2017.10.1021/acs.jpca.6b0870728132511Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo