1. bookVolume 114 (2017): Issue 2 (February 2017)
Journal Details
License
Format
Journal
eISSN
2353-737X
First Published
20 May 2020
Publication timeframe
1 time per year
Languages
English
access type Open Access

Characteristics of selected methods for the synthesis of nanometric zirconium oxide – critical review

Published Online: 23 May 2020
Volume & Issue: Volume 114 (2017) - Issue 2 (February 2017)
Page range: 105 - 118
Journal Details
License
Format
Journal
eISSN
2353-737X
First Published
20 May 2020
Publication timeframe
1 time per year
Languages
English
Abstract

High chemical stability, resistance to changes in the pH, pressure and temperature meant that zirconium oxide is widely used in many fields. It is used in water treatment and waste water treatment processes, as well as air purification. In this paper, selected methods of nano-zirconia synthesis in liquid phase were characterized. These methods include, among others, the microemulsion method. Based on literature data, the advantages and difficulties associated with the use of each method are presented, in order to answer the question of which method of nanometric zirconium oxide synthesis in the liquid phase is the most advantageous. The authors also pointed out some directions of development for the discussed methods, which relate to, among others, solvent change and the use of additives in the form of polymers.

Keywords

[1] Pulit J., Banach M., Kowalski Z., Chemical reduction as the main method for obtaining nanosilver, Journal of Computational Theoretical Nanoscience 10, 2, 2013, 276–284.10.1166/jctn.2013.2691Search in Google Scholar

[2] Marzec A., Pulit J., Kwaśny J., Banach M., Nanometale–wybrane technologie wytwarzania, Technical Translations vol. 1-Ch/2012, 95107.Search in Google Scholar

[3] Swihart M. T., Vapor-phase synthesis of nanoparticles, Current Opinion in Colloid and Interface Science 8, 2003, 127–133.10.1016/S1359-0294(03)00007-4Search in Google Scholar

[4] Reguła T., Darłak P., Tchórz A., Lech-Grega M., Próba wytworzenia kompozytu na osnowie CuxAly zbrojonego cząsteczkami Al2O3 przy pomocy procesu mechanosyntezy, Prace Instytutu Odlewnictwa 1, 2010, 2935.Search in Google Scholar

[5] Goharshadi E. K., Hadadian M., Effect of calcination temperature on structural, vibrational, optical, and rheological properties of zirconia nanoparticles, Ceramics International 38 (3), 2012, 1771–1777.10.1016/j.ceramint.2011.09.063Search in Google Scholar

[6] Xie Z., Ma J., Xu Q., Huang Y., Cheng Y.-B., Effects of dispersants and soluble counter-ions on aqueous dispersability of nano-sized zirconia powder, Ceramics International 30, 2004, 219–224.10.1016/S0272-8842(03)00092-0Search in Google Scholar

[7] Khare J., Srivastava H., Singh C.H.P., Joshi M.P., Kukreja L.M., Vapor phase synthesis of hexagonal shaped single crystal yttria stabilized zirconia nanoparticles using CO2 laser, Ceramics International 39, 2013, 1103–1109.10.1016/j.ceramint.2012.07.033Search in Google Scholar

[8] Simchi A., Ahmadi R., Seyed Reihani S.M., Mahdavi A., Kinetics and mechanisms of nanoparticle formation and growth in vapor phase condensation process, Materials and Design 28, 2007, 850–856.10.1016/j.matdes.2005.10.017Search in Google Scholar

[9] Vasilyeva E.S., Tolochko O.V., Kim B.K., Lee D.W., Kim D.S., Synthesis of tungsten disulphide nanoparticles by the chemical vapor condensation method, Microelectronics Journal 40, 2009, 687–691.10.1016/j.mejo.2008.11.066Search in Google Scholar

[10] Gavillet J., Belmonte T., Hertz D., Michel H., Low temperature zirconia thin film synthesis by a chemical vapour deposition process involving ZrCl4 and O2–H2–Ar microwave post-discharges. Comparison with a conventional CVD hydrolysis process, Thin Solid Films 301, 1997, 35–44.10.1016/S0040-6090(96)09526-0Search in Google Scholar

[11] Srdic V.V., Winterer M., Miehe G., Hahn H., Different zirconia-aluminia nanopowders by modifications of chemical vapour synthesis, Nanostructured Materials 12, 1999, 95–100.10.1016/S0965-9773(99)00073-2Search in Google Scholar

[12] Choi H.-S., Ryu C.-H., Hwang G.-J., Obtention of ZrO2–SiO2 hydrogen permselective membrane by chemical vapor deposition method, Chemical Engineering Journal 232, 2013, 302–309.10.1016/j.cej.2013.07.105Search in Google Scholar

[13] Jiang J., Shen W., Hertz J.L., Fabrication of epitaxial zirconia and ceria thin films with arbitrary dopant and host atom composition, Thin Solid Films 522, 2012, 66–70.10.1016/j.tsf.2012.09.013Search in Google Scholar

[14] Yeh T.-H., Lin R.-D., Cherng J.-S., Significantly enhanced ionic conductivity of yttria-stabilized zirconia polycrystalline nano-film by thermal annealing, Thin Solid Films 544, 2013, 148–151.10.1016/j.tsf.2013.03.134Search in Google Scholar

[15] Hass D.D., Zhao H., Dobbins T., Allen A.J., Slifka A.J., Wadley H.N.G., Multi-scale pore morphology in directed vapor deposited yttria-stabilized zirconia coatings, Materials Science and Engineering A 527, 2010, 6270–6282.10.1016/j.msea.2010.06.033Search in Google Scholar

[16] Li H., Khor K.A., Kumar R., Cheang P., Characterization of hydroxyapatite/nano-zirconia composite coatings deposited by high velocity oxy-fuel (HVOF) spray process, Surface and Coatings Technology 182, 2004, 227–236.10.1016/j.surfcoat.2003.08.081Search in Google Scholar

[17] Joulia A., Bolelli G., Gualtieri E., Lusvarghi L., Valeri S., Vardelle M., Rossignol S., Vardelle A., Comparing the deposition mechanisms in suspension plasma spray (SPS) and solution precursor plasma spray (SPPS) deposition of yttria-stabilised zirconia (YSZ), Journal of the European Ceramic Society 34, 2014, 3925–3940.10.1016/j.jeurceramsoc.2014.05.024Search in Google Scholar

[18] Dong H., Yang G.-J., Cai H.-N., Li C.-X., Li C.-J., Propagation feature of cracks in plasma-sprayed YSZ coatings under gradient thermal cycling, Ceramics International 41, 2015, 3481–3489.10.1016/j.ceramint.2014.10.174Search in Google Scholar

[19] Dong H., Yang G.-J., Cai H.-N., Ding H., Li C.-X., Li C.-J., The influence of temperature gradient across YSZ on thermal cyclic lifetime of plasma-sprayed thermal barrier coatings, Ceramics International 41, 2015, 11046–11056.10.1016/j.ceramint.2015.05.049Search in Google Scholar

[20] Gao L., Wei L., Guo H., Gong S., Xu H., Deposition mechanisms of yttria-stabilized zirconia coatings during plasma spray physical vapor deposition, Ceramics International 42, 2016, 5530–5536.10.1016/j.ceramint.2015.12.111Search in Google Scholar

[21] Smits K., Grigorjeva L., Millers D., Kundzins K., Ignatans R., Grabis J., Monty C., Luminescence properties of zirconia nanocrystals prepared by solar physical vapor deposition, Optical Materials 37, 2014, 251–256.10.1016/j.optmat.2014.06.003Search in Google Scholar

[22] Bernard O., Huntz A.M., Andrieux M., Seiler W., Ji V., Poissonnet S., Synthesis, structure, microstructure and mechanical characteristics of MOCVD deposited zirconia films, Applied Surface Science 253, 2007, 4626–4640.10.1016/j.apsusc.2006.10.025Search in Google Scholar

[23] Hemmer E., Kumakiri I. et al., Nanostructured ZrO2 membranes prepared by liquid-injection chemical vapor deposition, Microporous and Mesoporous Materials 163, 2012, 229–236.10.1016/j.micromeso.2012.06.057Search in Google Scholar

[24] Shi G., Yu F., Wang Y., Li R., Synthesis of growth-controlled ZrO2 nanocrystals via vapor phase hydrolysis, Ceramics International 40, 2014, 13083–13088.10.1016/j.ceramint.2014.05.006Search in Google Scholar

[25] Djurado E., Dessemond L., Roux C., Phase stability of nanostructured tetragonal zirconia polycrystals versus temperature and water vapor, Solid State Ionics 136–137, 2000, 1249–1254.10.1016/S0167-2738(00)00595-6Search in Google Scholar

[26] Liu S., Jiang K., Zhang H., Liu Y., Zhang L., Su B., Liu Y., Nano-nano composite powders of lanthanum–gadolinium zirconate and gadolinia-stabilized zirconia prepared by spray pyrolysis, Surface & Coatings Technology 232, 2013, 419–424.10.1016/j.surfcoat.2013.05.044Search in Google Scholar

[27] Amézaga-Madrid P., Hurtado-Macías A., Antúnez-Flores W., Estrada-Ortiz F., Pizá-Ruiz P., Miki-Yoshida M., Synthesis, microstructural, optical and mechanical properties of yttria stabilized zirconia thin films, Journal of Alloys and Compounds 536S, 2012, S412–S417.10.1016/j.jallcom.2011.11.111Search in Google Scholar

[28] Tao K., Dou H., Sun K., Interfacial coprecipitation to prepare magnetite nanoparticles: Concentration and temperature dependence, Colloids and Surfaces A: Physicochem. Eng. Aspects 320, 2008, 115–122.10.1016/j.colsurfa.2008.01.051Search in Google Scholar

[29] Chen Q., Rondinone A.J., Chakoumakos B.C., Zhang Z.J., Synthesis of superparamagnetic MgFe2O4 nanoparticles by coprecipitation, Journal of Magnetism and Magnetic Materials 194, 1999, 1–7.10.1016/S0304-8853(98)00585-XSearch in Google Scholar

[30] Song J.E., Lee D.K., Kim H.W., Kim Y.I., Kang Y.S., Preparation and characterization of monodispersed indium–tin oxide nanoparticles, Colloids and Surfaces A: Physicochem. Eng. Aspects 257–258, 2005, 539–542.10.1016/j.colsurfa.2004.07.037Search in Google Scholar

[31] Benavente R., Salvador M.D., Alcázar M.C., Moreno R., Dense nanostructured zirconia compacts obtained by colloidal filtration of binary mixtures, Ceramics International 38, 2012, 2111–2117.10.1016/j.ceramint.2011.10.051Search in Google Scholar

[32] Chang Q., Zhou J., Wang Y., Meng G., Formation mechanism of zirconia nano-particles containing pores prepared via sol–gel-hydrothermal method, Advanced Powder Technology 21, 2010, 425–430.10.1016/j.apt.2009.11.003Search in Google Scholar

[33] Chintaparty R., Palagiri B., Nagireddy R.R., Immareddy V.R., Madhuri W., Effect of pH on structural, optical and dielectric properties of nano-zirconium oxide prepared by hydrothermal method, Materials Letters 161, 2015, 770–773.10.1016/j.matlet.2015.09.085Search in Google Scholar

[34] Kumar R. V., Ghoshal A.K., Pugazhenthi G., Fabrication of zirconia composite membrane by in-situ hydrothermal technique and its application in separation of methyl orange, Ecotoxicology and Environmental Safety 121, 2015, 73–79.10.1016/j.ecoenv.2015.05.006Search in Google Scholar

[35] Yoshimura M., Sōmiya S., Hydrothermal synthesis of crystallized nano-particles of rare earth-doped zirconia and hafnia, Materials Chemistry and Physics 61, 1999, 1–8.10.1016/S0254-0584(99)00104-2Search in Google Scholar

[36] Chang Q., Zhou J., Wang Y., Meng G., Preparation and characterization of unique zirconia crystals within pores via a sol–gel-hydrothermal method, Advanced Powder Technology 20, 2009, 371–374.10.1016/j.apt.2009.06.001Search in Google Scholar

[37] Behbahani A., Rowshanzamir S., Esmaeilifar A., Hydrothermal synthesis of zirconia nanoparticles from commercial zirconia, Procedia Engineering 42, 2012, 908–917.10.1016/j.proeng.2012.07.483Search in Google Scholar

[38] Huang H.-L., Cao G.Z., Shen I.Y., Hydrothermal synthesis of lead zirconate titanate (PZT or Pb(Zr0.52Ti0.48)O3) nano-particles using controlled ramping and cooling rates, Sensors and Actuators A 214, 2014, 111–119.10.1016/j.sna.2014.04.018Search in Google Scholar

[39] Ji X., Liu C. et al., Lauric acid template synthesis of thermally stable lamellar crystalline zirconia via a reflux-hydrothermal route, Materials Letters 122, 2014, 309–311.10.1016/j.matlet.2014.02.033Search in Google Scholar

[40] Chintaparty C. R., Influence of calcination temperature on structural, optical, dielectric properties of nano zirconium oxide, Optik 127, 2016, 4889–4893.10.1016/j.ijleo.2016.02.014Search in Google Scholar

[41] Ao H., Liu X., Zhang H., Zhou J., Huang X., Feng Z., Xu H., Preparation of scandia stabilized zirconia powder using microwave-hydrothermal method, Journal of Rare Earths 33, 7, 2015, 746–751.10.1016/S1002-0721(14)60480-4Search in Google Scholar

[42] Li C., Li K., Li H., Zhang Y., Ouyang H., Liu L., Sun C., Effect of reaction temperature on crystallization of nanocrystalline zirconia synthesized by microwave-hydrothermal process, Journal of Alloys and Compounds 561, 2013, 23–27.10.1016/j.jallcom.2013.01.157Search in Google Scholar

[43] Porębska K., Powłoki hydrofobowe na baize SiO2 wytwarzane metodą zol-żel, Budownictwo i Architektura 12(4), 2013, 257–267.10.35784/bud-arch.1980Search in Google Scholar

[44] Walczak M., Charakterystyka powłok ceramicznych SiO2 i SiO2–TiO2 otrzymywanych metodą zol-żel, Postępy Nauki i Techniki 9, 2011, 8090.Search in Google Scholar

[45] Persson C., Unosson E., Ajaxon I., Engstrand J., Engqvist H., Xia W., Nano grain sized zirconia–silica glass ceramics for dental applications, Journal of the European Ceramic Society 32, 2012, 4105–4110.10.1016/j.jeurceramsoc.2012.06.028Search in Google Scholar

[46] Mishra M.K., Tyagi B., Jasra R.V., Synthesis and characterization of nano-crystalline sulfated zirconia by sol–gel method, Journal of Molecular Catalysis A: Chemical 223, 2004, 61–65.10.1016/j.molcata.2003.09.040Search in Google Scholar

[47] Akkari R., Ghorbel A., Essayem N., Figueras F., Synthesis and characterization of mesoporous silica-supported nano-crystalline sulfated zirconia catalysts prepared by a sol–gel process: Effect of the S/Zr molar ratio, Applied Catalysis A: General 328, 2007, 43–51.10.1016/j.apcata.2007.05.014Search in Google Scholar

[48] De la Rosa J.R., Hernandez A., Rojas F., Ledezma J.J., Sol–gel synthesis and characterization of novel La, Mn and Fe doped zirconia: Catalytic combustion activity of trichloroethylene, Colloids and Surfaces A: Physicochem. Eng. Aspects 315, 2008, 147–155.10.1016/j.colsurfa.2007.07.029Search in Google Scholar

[49] López-Quintela M.A., Tojo C., Blanco M.C., García Rio L., Leis J.R., Microemulsion dynamics and reactions in microemulsions, Current Opinion in Colloid & Interface Science 9, 2004, 264–278.10.1016/j.cocis.2004.05.029Search in Google Scholar

[50] Malik M.A., Wani M.Y., Hashim M.A., Microemulsion method: A novel route to synthesize organic and inorganic nanomaterials, Arabian Journal of Chemistry 5, 2012, 397–417.10.1016/j.arabjc.2010.09.027Search in Google Scholar

[51] Margulis-Goshen K., Magdassi S., Organic nanoparticles from microemulsions: Formation and applications, Current Opinion in Colloid & Interface Science 17, 2012, 290–296.10.1016/j.cocis.2012.06.005Search in Google Scholar

[52] Sanchez-Dominguez M., Pemartin K., Boutonnet M., Preparation of inorganic nanoparticles in oil-in-water microemulsions: A soft and versatile approach, Current Opinion in Colloid & Interface Science 17, 2012, 297–305.10.1016/j.cocis.2012.06.007Search in Google Scholar

[53] Duan G.-R., Yang X.-J., Huang G.-H., Lu L.-D., Wang X., Water/span80/Triton X-100/nhexyl alcohol/n-octane microemulsion system and the study of its application for preparing nanosized zirconia, Materials Letters 60, 2006, 1582–1587.10.1016/j.matlet.2005.11.074Search in Google Scholar

[54] Tai C. Y., Hsiao B.-Y., Chiu H.-Y., Preparation of spherical hydrous-zirconia nanoparticles by low temperature hydrolysis in a reverse microemulsion, Colloids and Surfaces A: Physicochem. Eng. Aspects 237, 2004, 105–111.10.1016/j.colsurfa.2004.02.014Search in Google Scholar

[55] López-Quintela M.A., Rivas J., Blanco M.C., Tojo C., Synthesis of nanoparticles in microemulsions, [in:] L. M. Liz-Marzán, P. V. Kamat (Eds.), Nanoscale Materials, Springer US, 2003, 135–155.10.1007/0-306-48108-1_6Search in Google Scholar

[56] Witek E., Kochanowski A., Pazdro M., Bortel E., Mikroemulsje jako źródło nanolateksów i nanoreaktorów, Polimery 51, 2006, 507–516.10.14314/polimery.2006.507Search in Google Scholar

[57] Zhou M., Xu L. et al., Investigation on the preparation and properties of monodispersed Al2O3–ZrO2 nanopowder via Co-precipitation method, Journal of Alloys and Compounds 678, 2016, 337–342.10.1016/j.jallcom.2016.03.265Search in Google Scholar

[58] Hsu Y.-W., Yang K.-H., Chang K.-M., Yeh S.-W., Wang M.-C., Synthesis and crystallization behavior of 3 mol% yttria stabilized tetragonal zirconia polycrystals (3Y-TZP) nanosized powders prepared using a simple co-precipitation process, Journal of Alloys and Compounds 509, 2011, 6864–6870.10.1016/j.jallcom.2011.03.162Search in Google Scholar

[59] Lan L., Chen S., Cao Y., Zhao M., Gong M., Chen Y., Preparation of ceria–zirconia by modified coprecipitation method and its supported Pd-only three-way catalyst, Journal of Colloid and Interface Science 450, 2015, 404–416.10.1016/j.jcis.2015.03.04225863223Search in Google Scholar

[60] Aruna S.T., Arul Paligan B., Balaji N., Praveen Kumar V., Properties of plasma sprayed yttria stabilized zirconia thermal barrier coating prepared from co-precipitation synthesized powder, Ceramics International 40, 2014, 11157–11162.10.1016/j.ceramint.2014.03.143Search in Google Scholar

[61] Wang S., Li X., Zhai Y., Wang K., Preparation of homodispersed nano zirconia, Powder Technology 168, 2006, 53–58.10.1016/j.powtec.2006.07.001Search in Google Scholar

[62] Dudnik E.V., Modern methods for hydrothermal synthesis of ZrO2-based nanocrystalline powders, Powder Metallurgy and Metal Ceramics 48, 3–4, 2009, 238–248.10.1007/s11106-009-9105-zSearch in Google Scholar

[63] Caillot T., Salama Z., Chanut N., Cadete Santos Aires F.J., Bennici S., Auroux A., Hydrothermal synthesis and characterization of zirconia based catalysts, Journal of Solid State Chemistry 203, 2013, 79–85.10.1016/j.jssc.2013.04.005Search in Google Scholar

[64] Montazerian M. et al., Bioactivity and cell proliferation in radiopaque gel-derived CaOP2O5-SiO2-ZrO2 glass and glass–ceramic powders, Materials Science and Engineering C 55, 2015, 436–447.10.1016/j.msec.2015.05.065Search in Google Scholar

[65] Montazerian M. et al., Sol–gel synthesis, structure, sintering and properties of bioactive and inert nano-apatite–zirconia glass–ceramics, Ceramics International 41, 2015, 11024–11045.10.1016/j.ceramint.2015.05.047Search in Google Scholar

[66] Miyoshi S., Akao Y., Kuwata N., et al., Water uptake and conduction property of nano-grained yttria-doped zirconia fabricated by ultra-high pressure compaction at room temperature, Solid State Ionics 207, 2012, 21–28.10.1016/j.ssi.2011.11.014Search in Google Scholar

[67] You H.C., Chang C.-M., et al., Facile preparation of sol–gel-derived ultrathin and high-dielectric zirconia films for capacitor devices, Applied Surface Science 258, 2012, 10084–10088.10.1016/j.apsusc.2012.06.079Search in Google Scholar

[68] Díaz-Parralejo A., Macías-García A., Sánchez-González J., Díaz-Díez M.Á., Cuerda-Correa E.M., Influence of the experimental parameters on the synthesis process of yttria-doped zirconia sol-gel films, Surface & Coatings Technology 204, 2010, 2257–2261.10.1016/j.surfcoat.2009.12.015Search in Google Scholar

[69] Boutonnet M, Kizzling J, Stenius P, The preparation of monodisperse colloidal metal particles from microemulsions, Colloids and Surfaces 5, 1982, 209–225.10.1016/0166-6622(82)80079-6Search in Google Scholar

[70] Ma T., Huang Y., Yang J., He J., Zhao L., Preparation of spherical zirconia powder in microemulsion system and its densification behavior, Materials and Design 25, 2004, 515–519.10.1016/j.matdes.2004.01.008Search in Google Scholar

[71] Lee M.H., Tai C.Y., Lu C.J., Synthesis of spherical zirconia by precipitation between two water/oil emulsions, Journal of the European Ceramic Society 19, 1999, 2593–2603.10.1016/S0955-2219(99)00044-8Search in Google Scholar

[72] Tai C.Y., Lee M.H., Wu Y.C., Control of zirconia particle size by using two-emulsion precipitation technique, Chemical Engineering Science 56, 2001, 2389–2398.10.1016/S0009-2509(00)00454-1Search in Google Scholar

[73] Qiu H.B., Gao L., Qiao H.C., Guo J.K., Yan D.S., Nano-crystalline zirconia powder processing through innovative wet-chemical methods, Nanostructured Materials 6, 1995, 373–376.10.1016/0965-9773(95)00074-7Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo